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1. INTRODUCTION
Up to about 10 years ago, computational physics was considered to be more or less a fringe
discipline having very little fundamental value. This is clearly demonstrated by the extremely
small number of universities that offered a proper curriculum in computational physics at
that time. This attitude has changed drastically, however, and today computational physics
has become part of the mainstream. It has been particularly successful in fields such as
materials science and soft matter, in which the complexity of the systems poses formidable
challenges for the understanding of their behavior.

The negative attitude may have had its origin in the desire to be able to solve physical
problems either by exact analytical means or by well-established experimental techniques.
As any computer simulation only provides numerical solutions to models (as compared to
exact solutions), it is likely that simulation was not considered to have the same seriousness
and fundamental value as other methods. A related dilemma is known by most of those
who teach computational methods in interdisciplinary programs: before they learn what
computational modeling is about, there are always a few opportunistic students who have
the idea that computational modeling is an easy way out without having to know much
of the underlying theory or having to deal with complicated equipment. Yet in many ways
computational modelers are like experimentalists. Instead of microscopes or accelerators,
however, they use computers, and instead of designing experiments, they try to build accurate
predictive models—for that they have to have solid knowledge of both the underlying theory
and possible experiments.

Today, there is no doubt about the value of computer simulations. It has become very
clear that advances in theory, experiments, and computational modeling go hand in hand.
This is particularly so in interdisciplinary fields such as soft matter and biophysics [1–4], in
which one needs to combine both knowledge and methodologies from very different fields.
Computer simulations have also become, or are becoming, standard tools in particle physics,
materials science, drug design, and biology, and the list could be easily continued to include
almost any field in science and engineering.

In this review we focus on recent developments and advances in modeling soft matter
and biological systems. Because of both fundamental and technological reasons, there is
strong desire to understand the overall behavior of complex macromolecular and biological
soft matter systems. From a theoretical point of view, this task is highly nontrivial because
processes in these systems take place over a huge range of length and timescales, whereas
current modeling and analytical techniques are feasible over relatively limited scales only.
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These systems often belong to the class of so-called complex fluids, which are characterized
by their multicomponent nature and simultaneous presence of several, often unseparable,
time- and length scales. The presence of many time- and length scales is the crux of soft
matter and biological modeling (see Fig. 1).

The time- and length scale problem is best illustrated by an example: water is always
present in biological systems. The size of a water molecule is approximately 10−10 m. The
relevant timescale is defined by molecular vibrations having characteristic times on the order
of 10−15 s. However, the biologically relevant problem of protein folding can take anything
from 1 !s up to about 1000 s, depending on the size of the protein. As for length scales, pro-
teins are long polyampholytes (i.e., polymers carrying both positive and negative charges, and
possessing a whole hierarchy of spatial ordering in different interdependent scales; see e.g.,
Ref. [5]). The other “classical” problem in biophysics involves DNA. The double stranded
DNA has a length of 1 m and a persistence length of approximately 50–100 nm (having
some sequence dependence). To make things even more complicated, one should remem-
ber that proteins, DNA, and lipids operate in cells, which from a biological point of view
are the functional entities of interest. Furthermore, cells consist of a large variety of differ-
ent components (proteins, different lipids, etc.) and have typical sizes around a few tens of
micrometers. As if the above would not be problematic enough, in living matter they are
actually dissipative structures operating under nonequilibrium conditions. Deciphering the
physical mechanisms of living matter is guaranteed to provide excitement and challenges for
generations of scientists.

Before moving on to more specific issues of computational modeling, another example is
provided by polymers. Although many biologically relevant molecules such as proteins and
DNA can be considered as biopolymers, there is also an enormously large field of polymer
science not related to living matter. Technologically, polymers are one of the central mate-
rials in modern-day society, with applications ranging from sophisticated medical materials
to the plastic bags we encounter while grocery shopping. From the modeling point of view,
it is really the field of polymers in which the ideas of linking many time- and length scales
have developed the fastest. This is easy to understand through the following simple example:
The timescales associated with bond vibrations are roughly 10−15 s, whereas conformational
transitions associated with individual bonds occur typically in timescales of 10−11 s. The
related changes taking place along the chain take orders of magnitude longer than these

Macroscale:

Masoscale:

Atomistic scale:

Subatomistic scale:

• times > 1 sec

• times ~ 10–8–10–2 sec

• times ~ 10–15–10–9 sec

• lengths > 1 µ

• lengths ~ 10–1000 Å

• lengths ~ 1–10 Å

• electronic structure
• ab initio, Green functions

• DPD, Lattice Boltzmann

Molecular Dynamics,
Monte Carlo

• phase field models, FEM,…

Simulation: Experiment: Scale: Entity:

C
E

LLS
M

O
LE

C
U

LE
S

O
R

G
A

N
E

LLE
S

A
TO

M
S

Naked eye

Light
microscope

Electron
microscope

0.2 mm

20 µm

2 µm

200 nm

20 nm

2 nm

0.2 nm

a
c
c
u
r
a
c
y

S
p
e
e
d

Figure 1. Different time- and length scales, typical computational methods used to study them, and biological
entities related to various length scales. The dilemma between speed and accuracy is always present in simulations:
it is always a trade-off between the two. In analogy to various simulation methods at different time- and length
scales, it is not possible to use single experimental methods to cover all properties. The right-hand side of the figure
is adapted from Ref. [4].
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timescales. Furthermore, industrially important processes such as spinodal decomposition,
or phase separation in general, have characteristic times of at least seconds.

What does the above mean from the point of view of computer simulations? There is a
whole plethora of different methods, all having both advantages and limitations. In ab initio
simulations, quantum mechanical details are taken into account, limiting the obtainable sys-
tem sizes to a few hundred atoms as a result to the large number of electronic degrees of
freedom—this is obviously not enough for polymeric or biological systems, is it? One can
make an estimate that using the most powerful central processing units (CPUs) available at
the moment for simulating the folding of the smallest proteins by using accurate ab initio
methods, it would take about 10 000 CPU-years—and this is a fairly optimistic scenario.

As a consequence, quantum mechanical approaches are appropriate only for issues in
which electronic degrees of freedom cannot be neglected. In addition, they can be used to
develop force fields for classical molecular dynamics (MD) simulations that are able to reach
time scales of the order of 100 ns and linear system sizes of some tens of nanometers. Clas-
sical MD thus provides a unique tool to study various properties related to many biologically
relevant soft matter systems, including small biomolecules and systems composed of these
systems. The MD technique is indeed the workhorse in the modeling of biophysical systems,
and it will be described in detail in the following sections.

The above very clearly expresses the fact that the range of problems in which quantum
mechanics is appropriate is very limited. Further, the realistic time- and length scales acces-
sible through MD simulations are also rather modest and far below those important in, say,
polymer dynamics or protein folding. What this suggests is that one should think of building
a hierarchy of different methods, each method being valid and useful over a certain well-
defined length and timescale. By a proper design, the different methods can be made, ideally
at least, rigorously related to each other through systematic coarse-graining approaches in
which the detailed atomic or molecular description is replaced with a more simple one.
This is the idea behind multiscale modeling which has recently attracted a rapidly increasing
amount of attention in computational materials research [6–16]. The approach where clas-
sical force fields are obtained from quantum MD and then used in classical MD can, as a
matter of fact, be seen as an example of a coarse-graining procedure.

The multiscale approach sounds appealing, but it includes a fundamental problem: There
is no unique way to perform coarse-graining. There are many aspects to that problem, but
one can immediately get a grasp of it by considering a simple-minded spatial coarse-graining
of a cholesterol molecule depicted in Fig. 2: How should one select the new “superatoms”?
What are the new interactions in the coarse-grained description? Is the new model consistent
with the microscopic one (i.e., does it provide correct static and dynamic properties)? Are
there alternative methods? And so on.

Because of the above reasons, and despite the difficulties, coarse-graining has become
an increasingly active field of research. A variety of different approaches, some more and
others less rigorous, have been presented. We will discuss some of them in the follow-
ing sections but, to give a flavor, we mention a few here. As already discussed, finding a
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Figure 2. A model of cholesterol. Left: an atomic-level representation with the OH group shown with red and
white at the top. Right: the same molecule with a possible definition of new coarse-grained interaction sites, or
“superatoms,” shown by the rectangular blocks.
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systematic hierarchy is a major problem. Another important aspect concerns the fact that
multiscale modeling involves two possible processes. First of all is coarse-graining or trans-
forming detailed models to simplified descriptions with less degrees of freedom. This means
averaging over some chosen properties of microscopic entities to form larger basic units for
modeling. Second, fine-graining which is the opposite of coarse-graining. In this process,
configurational properties are typically the key quantities as one maps a coarser model to a
more detailed one.

In general, one tries to approach the problem via one of the following routes: by phe-
nomenological methods based on (e.g., Ginzburg–Landau-type approach); by analytical
approaches based on the operator projection formalism; by analyzing static properties and
constructing the of potential of mean force; by free-energy methods (i.e., configurational
analysis); or by analyzing the occurrence rates of different processes.

The phenomenological approaches include methods such as dissipative particle dynamics
(DPD; see, e.g., [17]), possibly the most used mesoscale modeling method for soft matter
systems. The main idea there is to use “soft” phenomenological interparticle potentials and a
momentum-conserving thermostat to ensure hydrodynamics. The intrinsic timescale in DPD
is typically 10–20 ps, and the length scale is around 1 nm. DPD was introduced about a
decade ago [18–20], and since then various generalizations have been introduced, providing
the method a more rigorous theoretical background [21]. We will discuss DPD in detail in
the following sections.

A more macroscopic phenomenological approach is based on Ginzburg–Landau-type for-
malism by introducing order parameters and free-energy and density functionals for the
system. This approach is based on finding the relevant (slow) variables and general sym-
metry principles, and as such is close to a macroscopic description. It is particularly fruitful
in dealing with phenomena involving spinodal decomposition or nucleation processes [22].
The review of Kawakatsu et al. [23] puts these models in perspective with more microscopic
approaches, and a very detailed discussion of the mathematical aspects can be found in
Ref. [24].

The most successful analytical approach is the so-called GENERIC, or general equation
for non-equilibrium reversible–irreversible coupling, introduced by Grmela and Öttinger
[25–27]. The advantage of this method is that it provides a physically sound approach based
on statistical mechanics. It uses projection operator formalism in building up hierarchies
between different levels of description, thus ensuring self-consistency. Despite its rather
mathematical formalism, it can be used in connection with actual numerical simulations. An
excellent review of GENERIC and other analytical approaches is provided by Español in
Ref. [28].

Using static properties to obtain potentials of mean force has been a common approach
in polymer science. One of the most interesting efforts has been the activity of the
Mainz/Bremen region on optimized methods for generating potentials from structural infor-
mation. The particularly interesting part of that is the inverse procedure (i.e., fine-graining
alongside with the coarse-graining efforts). The problems in polymer science are challenging,
and it is easy to appreciate them if one remembers that for polymer melts of low molec-
ular weight, the conformational relaxation time (caused by diffusion) scales as N 2 (Rouse
scaling), where N is the number of monomers. This said, the scaling is much worse for high-
molecular-weight melt. In real-world applications, the relaxation times are from milliseconds
upward. It is obvious that coarse-grained methods are needed and that this is really the field
in which there has been a lot of effort. For reviews, see Refs. [29–32].

As another example, let us note that there have been only a few published coarse-grained
lipid simulations, and to the authors’ knowledge, they are all based on interaction site def-
initions (i.e., selecting interaction sites on some physical principles and then, often phe-
nomenologically, choosing the relevant inter- and intramolecular potentials). That approach
is, to a degree, always ad hoc, but the results of the Philadelphia group on lipid membranes
[15, 33, 34] and the Groningen group on vesicle dynamics [35] have been very encouraging.

Thus, there is a timely practical problem of finding generally applicable and computation-
ally efficient methods to coarse-grain molecular systems and of establishing a systematic link
between the microscopic and macroscopic regimes by the means of statistical mechanics.
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We will discuss many of these issues in detail, but we would also like to refer the reader
to some of the existing reviews on specialized topics: Kröger [36] discusses practical issues
related to the rheology of polymers in detail, including aspects related to GENERIC and
projection operator methods. Baschnagl et al. [29] provide an extensive review on coarse-
graining in polymer science. In addition, the lecture notes of the summer school Soft-
Simu2002 [28] and the lecture notes of the conference “Bridging the Time-Scale Gap” [37]
also address issues not covered in this review at length, including hydrodynamics, lattice
Boltzmann, granular materials, and quantum-classical models.

In general, multiscale modeling has been a well-adopted and accepted field in Europe,
and in particular by the European Science Foundation SIMU Research Network [38]. This
is also the case in Japan, where the efforts are highlighted by Masao Doi’s ambitious seam-
less zooming project, which produced the OCTA package for multiscale simulations of soft
matter systems [39, 40]. Hence, it is rather surprising that there has been very little activity
in North America. It is not difficult to predict that this situation will change.

The rest of the article is organized as follows. In Section 2 we discuss the field of molecular
simulations in general, focusing on modeling techniques from the microscopic point of view.
That is followed in Section 3 by a discussion of some of the novel and most used mesoscopic
simulation methods, including DPD and its extensions, phase field modeling, lattice Boltz-
mann, and the GENERIC hierarchy. In Section 4 we discuss a number of methodological
issues that are crucial in molecular modeling, and we continue in Section 5 by presenting
a few applications of atomic molecular dynamics simulations in the context of biophysical
systems. Finally, we present an example of coarse graining and mesoscale simulations in
Section 6 and close this work by a brief summary in Section 7.

2. MOLECULAR SIMULATIONS
The field of molecular simulations is extremely wide, covering a variety of different methods
for different purposes in the quantum, atomic-scale classical, and mesoscopic and continuum
regimes. In this section, we briefly discuss the main ideas of atomic-level molecular simula-
tions, starting from a historical perspective and proceeding to a few atomic-scale simulation
techniques. As the topic is very wide, we have decided to focus on methods that are most
relevant for the applications discussed later in this chapter.

Because of their importance for studies of large-scale properties of soft matter systems,
coarse-graining and mesoscale simulation methods are discussed separately in Section 3.

2.1. Historical Perspective from ENIAC to GRID

The beginning of the era of computational sciences can be traced back to the early 1950s,
after which the field went through a rapid increase in activities. The progress has taken place
hand in hand with the development of computers and computational methods that are the
basis of computational modeling of physical systems. Although the former of these two fields
is related to microelectronics and semiconductor physics, and the latter is closely associ-
ated with applied mathematics and computational sciences, they are both closely coupled to
molecular simulations. As a matter of fact, the history of these two fields of science is closely
related to each other, too. Since the development of the first electronic computer, ENIAC
[41], many of the people who took part in the pioneering work of developing computers
have also had a strong effect on the development of computational methods and algorithms.
For example, N. Metropolis originally suggested [42] an obvious name for the Monte Carlo
(MC) simulation method [43, 44], as the method is largely based on the use of random
numbers. Also, with J. von Neumann, Metropolis studied the randomness of the decimals of
" and e [45] and developed the first algorithm for generating pseudorandom numbers (the
so-called midsquare method [46, 47]).

Ever since, development of computers and simulation methods have taken steps hand in
hand. From the pioneering computer simulations of simple liquids on MANIAC, we have
come to a situation in which molecular simulations of complex biophysical systems such
as DNA condensation and channel proteins in lipid membranes are almost daily routine.
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On one hand, this is a results of computing resources that at present are tremendous com-
pared to those that were available in the 1950s. On the other hand, this is also a result of
major progress in the development of computer algorithms and the methodology in general.

How have we arrived in the present situation? How the modeling of molecular systems
started in the first place? One is tempted to think that the history of molecular models is
related to the development of computers in the 1950s, but actually modeling of molecular
systems started long before computers were invented. To our knowledge, the first structural
models for molecules were suggested in the end of the ninteenth and in the beginning of
the twentieth centuries. Despite their rather crude nature, these models allowed one to
better understand the three-dimensional structure and related physicochemical properties
of liquids. The actual pioneer, however, is probably van der Waals, whose work lead to the
well-known equation of state that predicted a first-order gas–liquid phase transition.

Mathematical models in terms of computer simulations joined the game 50 years ago,
when the first computer simulation of simple liquids was carried out by Metropolis et al.
[44]. The MC method used at that time allowed one to consider structural properties of
liquids, and although the advances in computing power have been rapid, the method itself
is still alive and well. As a matter of fact, it is nowadays used with success on an ever-
increasing number of problems. Yet, as the MC method is not particularly appropriate for
studies of dynamical properties, other techniques have been designed for this purpose. The
most appropriate approach in this regard is, of course, the MD technique. In MD, a system
is described as an ensemble of interacting particles whose evolution in time is found through
an integration of Newton’s equations of motion. This approach was first used for a system
of hard spheres by Alder and Wainwright [48, 49]. A more realistic description of a liquid
in terms of Lennard–Jones particles was later accomplished by Rahman in the 1960s [50].

After this groundwork, the progress has been rapid. Barker and Watts suggested [51]
the first model for molecular liquid water using MC, and Rahman and Stillinger [52] fol-
lowed using MD. Nevertheless, despite major activities that have extended for over 30 years,
water has remained as one of the most difficult problems in the field of molecular simu-
lations. Equally difficult is the description of proteins that originated from the early work
by McCammon in 1977 [53]. The progress ever since has been remarkable, and it is rather
confusing to try to understand how tedious biophysical systems can be tackled today despite
their highly complex nature. Although the small proteins studied by McCammon in 1977
were considered in vacuum without electrostatics for a timescale of picoseconds, today one is
able to simulate transmembrane water channels and other integral proteins in fully hydrated
lipid membranes with full electrostatic interactions over a timescale of several nanoseconds
[54, 55].

Although the first computer simulations were based on the use of punch cards [56], our
work today is based on highly advanced computing architectures together with modern pro-
gramming languages. Also, starting from the first computers such as ENIAC and MANIAC,
we have come to a situation in which computer simulations are carried out in massively
parallel supercomputers composed of thousands of central processing units (CPUs). Most
recently, initiatives have been made to establish highly parallel and connected networks of
computer clusters (GRIDs) to obtain similar capacity across the Internet. Although it is
easy to look into the past, the rapid development in the field of molecular simulations does
not make it too easy to make any conclusive predictions about the future. Anyhow, in the
present and in the next section, we will find that the advances in simulation techniques have
been substantial during the last decades. On this basis, it is easy to predict that the future
of molecular simulations is both challenging and very positive.

2.2. Main Principles of Molecular Modeling

What is molecular modeling? To clarify this obvious matter, let us first quote the view by
Tamar Schlick [57]: “Molecular modeling is the science and art of studying molecular struc-
ture and function through model building and computation.”

Model building can be as simple as the Lego bricks that the authors liked a lot some
25 years ago—and still do. This approach can provide one with important insight into the



8 Modeling of Biologically Motivated Soft Matter Systems

structure of liquids and more complex molecules. The structure of DNA, for example, was
first discovered using this approach (though, to our knowledge, not with Lego bricks). The
discovery of C60 Buckminsterfullerene provides another example, as the first prototype of its
structure made by Richard E. Smalley was made of paper sheets [58]. On the computational
side, model building starts from building the topology and initial structures of molecules
that typically need input from experiments such as nuclear magnetic resonance (NMR) and
various scattering techniques. Having done this, one needs to write down the Hamiltonian
operator ! , which includes all interactions present in the model system. The Hamiltonian
operator (often called “force field” in classical simulations) plays the key role in molecular
simulations.

In principle, if we were clever enough, we could simply use ! to solve the structure and
the dynamics of the system using just paper, pen, and our brains. However, as we are often
dealing with a many-body problem having much more than just two interacting components,
an analytical exact solution is rarely possible [59]. Alternatively, one can simplify the prob-
lem and try to find approximate descriptions of the system, but then the validity of the
approximations remains elusive. This barrier can be crossed by computer simulations, where
the aim is to study the dynamics of a given system with the corresponding Hamiltonian
through computers. Computer simulations allow us to do theoretical experiments without
any approximations, thus providing a bridge between theory and experiments.

In the field of molecular simulations, this underlying idea has lead to the introduction of
a number of useful simulation techniques, including ab initio, molecular mechanics, classical
molecular dynamics, MC, free-energy calculation techniques, dissipative particle dynamics,
and many many more. Below, we discuss the key issues of the main approaches designed for
the atomic regime.

The topology of the molecules is here taken for granted. Thus we concentrate on the
Hamiltonian operator and on the related issues of finding a proper force field for a given
system. For a more thorough discussion on these techniques, see Refs. [57, 60–62].

2.3. Molecular Modeling in the Atomic Regime: From Quantum
Mechanics to Classical Molecular Dynamics

2.3.1. Quantum Mechanical Techniques
 

Quantum mechanical (QM) simulation methods are based on the solution of the
Schrödinger equation. The Schrödinger equation

 !#n = En#n (1)

is written in terms of the Hamiltonian operator ! , which acts on the eigenfunctions #n

whose corresponding energy eigenvalues (quantum states) are given by En. The Schrödinger
equation therefore describes the spatial probability distributions of energy states in a sta-
tionary case.

As the system in this case is composed of both nuclear and electronic degrees of freedom,
one often makes the assumption that the motions of electrons and nuclei can be separated
from each other. This so-called Born–Oppenheimer approximation is almost without excep-
tions in use in present-day QM methods and is well justified because the nuclei are usually
much heavier than the electrons, which implies that the positions of nuclei are essentially
fixed on the timescale of electronic motion. This assumption reduces the computational load
considerably compared to traditional electronic structure methods. Yet, further approxima-
tions are often crucial to allow studies of reasonable system sizes. In practice, there are two
commonly adapted approaches that allow that.
Ab initio (“from the beginning”) is based on the Born–Oppenheimer approximation of

the time-independent Schrödinger equation, ignoring relativistic effects and using a linear
combination of atomic orbitals that is specific to a chosen basis set. The energy of the sys-
tem is calculated iteratively (self-consistently), which makes the calculation computationally
expensive for reasonable system sizes. Another possibility is to use density-functional theory
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(DFT) in which the method is constructed to be based on the use of the electron density
function. Different DFT schemes [63] differ by their treatment of the exchange/correlation
energy, though in general this class of methods is rather efficient and widely used. One pop-
ular technique, for example, is the approach suggested by Car and Parrinello. In this scheme,
electronic DFT is used to calculate the energies and densities of the valence electrons “on
the fly” [64]. Because the technique is basically MD combined with DFT in the adiabatic
case using an extended Lagrangian approach, it is both efficient and highly useful in QM (as
well as in classical) problems. Another issue that has attracted plenty of attention is the use
of DFT for time-dependent problems. Because of recent progress, time-dependent DFT is
nowadays the method of choice for calculating, for example, excitation energies of complex
molecules, and it is becoming more and more popular for studies of spectroscopic properties
of nanostructures.

Semiempirical QM methods provide an alternative approach. They are partly based on
empirical information to replace a full QM description of parameters that define the forms
and energies of atomic orbitals. As expected, this reduces the computational load consider-
ably, possibly at the expense of accuracy.

In practice, QM approaches are applied in soft matter systems only to processes and
phenomena for which quantum mechanics cannot be neglected. The action of enzymes close
to their active site and other chemically activated processes are examples of such cases. Yet
the computational burden is major and limits the timescales that can be studied with QM
methods up to tens of picoseconds. As a consequence, recent work has focused on combining
QM methods with classical approaches such that, for example, the active site of an enzyme
is treated quantum mechanically, whereas the remaining part of the system is classical. The
problem then is to treat the boundary between QM and classical regimes [65–68].

As we will not present applications based on QM approaches, we prefer not to discuss
this issue in more depth. An interested reader is referred to Refs. [57, 62, 69, 70] for more
information on QM techniques, and to Refs. [66, 67, 71–73] for recent applications.

2.3.2. Interactions in Classical Methods
 

Classical simulation techniques are obviously based on QM, but they describe a given sys-
tem in a considerably more simplified fashion. In essence, in classical methods the quantum
degrees of freedom are integrated over—“thrown under the carpet”—such that the QM
effects are incorporated into the classical intramolecular and intermolecular interactions.
For example, although electronic degrees of freedom are not included in classical molecular
simulations, the exclusion rules of QM are taken into account in an effective sense: They
are manifested in classical simulations through strongly repulsive interatomic interactions at
short distances, which implies that two atoms cannot occupy the same space at the same
time.

The absence of electronic degrees of freedom basically implies that classical simulation
techniques are based on the assumption that the Born–Oppenheimer approximation is valid.
Assuming that this assumption holds true (i.e., we can write the energy of the system as a
function of nuclear coordinates, and the computational load of doing molecular simulations
is reduced considerably). Instead of worrying about interactions in a QM level, one can then
describe the energy of the system as a sum of contributions resulting from different kinds of
processes, such as bond stretching and bond bending. The key word here is force field.

The force field is the heart of molecular computer simulations. It describes the internal
energy of the system at any moment of time, and it obviously consists of a number of
terms, each of which describes some physical process. Generally speaking, for a system of
N particles whose coordinates are given by $"ri%, one can write down the force field as follows:

V =
∑

i

v1&"ri'+
∑

i

∑

j>i

v2&"ri( "rj'+
∑

i

∑

j>i

∑

k>j>i

v3&"ri( "rj( "rk'+ · · · (2)

The potential energy of the system is therefore divided into terms describing one-body, two-
body, and three-body interactions, as well as other higher-order interactions that have not
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been listed here. The one-body interaction (v1) can be as simple as the action of a uniform
electric field on a single atom. Two-body interactions (v2) are obviously those between two
interacting particles, and they are usually divided into bonded and nonbonded interactions.
Bonded two-body interactions such as bond stretching are usually those between particles
that are bonded by a covalent bond, and nonbonded interactions such as Coulombic inter-
actions are between those atoms that are not bonded, such as atoms in different molecules.
Higher-order interactions such as three- (v3) and four-body interactions include bond bend-
ing, torsional interactions, and so forth.

In practice, a simple force field typically used for biologically relevant molecules can look
like the following:

V =
∑

bonds

kb
i

2
&li − lref

i '2 +
∑

angles

ka
i

2
&)i − )ref

i '2 +
∑

torsions

VT

2
*1 + cos&n+− ,'-

+
N−1
∑

i=1

N
∑

j=i+1

{

4.ij

[(

/ij

rij

)12

−
(

/ij

rij

)6]

+ qiqj

4".0rij

}

(3)

Here the first term on the right-hand side describes the interaction resulting from bond
stretching for a pair of bonded particles, whose reference distance is chosen to be lref

i . The
interaction in this case is harmonic, and thus it is best justified for small fluctuations. As
a remark, note that lref

i is not the equilibrium distance because that depends on thermody-
namic conditions as well as the composition of the system. Rather, lref

i should be regarded
as the distance that two particles will adapt to in the absence of any other interactions in
a system. The second term in Eq. (3) is the (harmonic) bending interaction for three con-
secutive particles (A–B–C) in the same chain-like piece of a molecule, with the reference
value of the valence angle being )ref

i . The torsional interaction presented third is a four-
body term, whereas a short-range Lennard–Jones 6–12 potential is often used to describe
the steep repulsion caused by the Pauli-exclusion principle as well as van der Waals interac-
tions resulting from dispersion forces. Finally, there is an electrostatic term for long-range
Coulombic interactions for a pair of charged particles whose distance from each other is rij .

For clarity, let us emphasize here that, to define a force field, one must specify not only the
set of potential energy functions in a force field but also the force-field parameters (as well
as other practical details such as cutoff distances used in truncating long-range interactions)
used in the calculations. If one of the parameters is changed, then the force field is also
changed.

Although Eq. (3) provides us with a simple but typical example of a force field used for
biomolecules, it allows us to pose a number of relevant questions. How are the force fields
determined? Where do the parameters in the force fields come from? How can one validate
a force field?

Using Eq. (3) as an example, each of the terms has a clear physical meaning, and the
parameters associated with a given term can be determined either from theory or from
experiments. The theoretical approach is essentially based on quantum mechanical calcula-
tions and is often used to, for example, determine the distribution of partial charges within
a molecule. Unfortunately, however, this approach is of limited use because the fitting is not
easy to perform and depends critically on the quality of the QM computations, such as the
basis set used in calculations. Thus, it is common to calibrate parameters in force fields by
fitting them to empirical data.

The parameters in the bond stretching and bending interactions, for example, can be
determined by spectroscopic techniques, and the parameters in the van der Waals potential
can be derived by fitting parameters to crystal structures. Anyhow, even if the parameter
fitting process is done very carefully, there is no point in claiming that the obtained force
field is perfect. The number of different combinations of parameters is huge, and slight
weaknesses in some of them can be compensated for by adjustments in others. Therefore,
it should not be surprising to realize that there are many different force fields that are
commonly employed in the field of biomolecular modeling and simulation. For one reason or
another, each of them seems to have pros and cons that limits their use. To our knowledge,
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CHARMM (chemistry at Harvard macromolecular mechanics) force fields, for example,
serve well for simulations of a number of DNA structures [74]. The force fields used in
Gromacs [75] (see: http://www.gromacs.org), in turn, are likely a better choice for modeling
of lipids, whereas their performance in DNA simulations could be better. In addition to
these, many other force fields are in common use. AMBER, OPLS, NAMD, and MMFF
are just some of the many force fields available (see Ref. [57]).

Hence, we think it is fair to say that all force fields have certain deficiencies. They are
largely based on intuition and the validity of QM and experimental results used to fit the
force-field parameters. Further, all force fields are based on some set of potential energy
functions, whose validity can be questioned. The functional forms of the potential energy
functions can be very complicated, as is the case in the MM4 force field, allowing, for
example, accurate predictions of molecular structures. In contrast, one can employ simpler
functional forms, which makes it more feasible to model large molecules such as proteins or
DNA. Typical force fields in this category are AMBER and CHARMM. There is an endless
need for improvements of force fields as comparisons among their results with respect to
experimental observations reveal deviations. In the meantime, we can use current force fields
rather safely. Even if their predictions are not completely correct quantitatively, they can
provide us with plenty of qualitative insight into both structural and dynamic properties of
complex biological systems.

Although the above discussion is definitely short, an extensive discussion of the topic can
be found from a number of textbooks and recent review articles (see Refs. [57, 62]).

2.3.3. Dynamics in Classical Techniques
Although a force field is a crucial part of any molecular model, we need some means to
find the equilibrium structure of the system. This can be done in various ways. One can
apply energy minimization techniques or the MC simulation technique [60, 61], for example.
These methods use the force field as an input and eventually provide one with structures
corresponding to equilibrium conditions. However, as they cannot tell much of the dynamics
in a system, we shall not consider them any further in this chapter. Instead, we discuss an
approach that is the one most commonly used in (classical) atomic-level studies of biomolec-
ular systems: the MD technique [60, 61].

MD is highly popular because of its simplicity and physical appeal. In MD, one essentially
calculates forces acting on particles and then uses Newton’s equations of motion to update
their positions and velocities.

For simplicity’s sake, let us consider a system of N particles in the microcanonical NVE
ensemble (constant volume and constant energy without dissipation). Assuming that we know
the force field of the system, we can calculate the forces acting on the particles. Let the
force acting on particle i at time t be "Fi&t'. Then, in the spirit of Newton, we know that
"Fi&t' = mi "ai&t', where mi is the particle’s mass and "ai&t' is the acceleration resulting from

the force. In the simplest possible level, one can now calculate the new position and the
velocity of the particle at time t + 0t using a Taylor expansion about time t:

 "vi&t + 0t' = "vi&t'+ 0t "a&t' (4)

"ri&t + 0t' = "ri&t'+ 0t "v&t'+ 1
2
0t2 "a&t' (5)

In principle, that is it. Once we have written down the force field, we can construct a system
of, say, DNA attached to a lipid membrane surrounded by water and consider its dynamics
through MD simulations by repeatedly solving the Newton’s equations of motion.

However, as expected, there are a number of issues that might lead to problems. In
addition to the trouble of finding a reliable force field for the system in question, one is
bothered by various practical problems that are an inherent part of MD simulations. First of
all is the integration of equations of motion. Instead of using Eq. (4), which is far too simple
for practical purposes, one should apply an integration scheme that is both accurate and
efficient. In practice, we need an accurate scheme that also allows the use of a large time
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step 0t. Although there is a wide variety of different integration schemes available, so-called
symplectic integrators have turned out to be appropriate in many cases [70].

Second is how to deal with long-range interactions in a small (periodic) system. This
question is very relevant because it has been shown that certain schemes for long-range
interactions can lead to major artifacts in MD simulations of soft matter systems (see dis-
cussion in Section 4.1). At present, it seems like the Ewald-type summation schemes [60, 76]
are most appropriate for this purpose.

Third, as experiments are typically done under conditions in which the temperature and
some other thermodynamic variables are fixed, we have to ask ourselves how we can estab-
lish such conditions in MD simulations. This question with regard to different ensembles for
different physical conditions and as regards ways to handle this issue in practice is discussed
thoroughly (e.g., in Refs. [60, 61]). Further, as many soft matter systems are characterized
by a wide range of different timescales such as the motion of bond stretching compared to
the relative motion of two particles interacting through a long-range Coulombic potential,
one should ask how to efficiently deal with this situation. The multiple-time step schemes
discussed in Refs. [60, 77] provide one solution to this issue. Another and even more impor-
tant issue is related to living systems in general, as they are basically never in equilibrium. If
they are, they are dead. Thus, we need reliable ways to model biological soft matter systems
under nonequilibrium conditions. The field of nonequilibrium MD aims to address related
questions, and thanks to major activities in this challenging field [78], we are today at a stage
at which many of the interesting research problems have been clarified, at least in part.

Processes in biologically relevant soft matter systems often take place over very large
length and timescales, which puts some pressure on computational resources. Simulations
in a parallel environment are therefore a rule rather than an exception, which leads to
a number of practical questions, including, at the moment, how to deal with long-range
interactions and random number generation in a parallel environment. Some of these issues
will be discussed in more detail in Section 4.

For the time being, let us stress that the above issues can be a burden, but they can be
(and in many cases have been) solved. Thus, classical atomic-level MD has reached a level at
which it can be considered as a mature technique and can be applied to numerous intriguing
problems in a wide range of fields. MD simulations of DNA [79, 80], protein systems [80, 81],
protein folding [82, 83], and lipid membranes [84–88] are examples of this activity. Further
examples will be discussed in Section 5.

3. COARSE-GRAINING: MOVING BETWEEN DIFFERENT
TIME- AND LENGTH SCALES

The previous section summarized recent developments in molecular-level modeling of soft
matter and biological systems. As mentioned in Section 1, the Holy Grail of modeling is
to develop rigorous methods for linking different time- and length scales, such that both
coarse-graining and fine-graining are well defined. In the following text, we will briefly review
some of the new methods and provide a quick summary of their merits and problems. Of
the specific methods, we provide a more detailed look into the dissipative particle dynamics
in Section 3.2 and field theoretical methods in Section 3.3, as they represent two different
philosophies (i.e., particle-based vs. continuum approaches; see Fig. 1).

As discussed earlier, classical MD simulations of biologically motivated systems are typi-
cally limited to system sizes not much larger than 104 atoms and timescales spanning up to
around 100 ns in the best cases. The restrictions may be even worse if electrostatic inter-
actions must be properly accounted for. In addition, for systems such as polymer melts,
the computationally accessible time- and length scales are simply far too short for the sys-
tem to be able to reach equilibrium as dynamic processes during equilibration occur under
hydrodynamic conditions.

In the Section 1, we mentioned that polymer research has been one of the leading fields
in multiscale modeling in both practical and theoretical aspects. This is indeed the case,
and there are a lot of different approaches that have been used. On the analytical side the
projection operator-based formalism of Akkermans and Briels [6] provides an interesting
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approach to study the emergence of fluctuating forces in a more coarse-grained descrip-
tion. The projection operator formalism has also been used successfully (although in a very
different manner) in the GENERIC approach [25–27], which provides an analytically rig-
orous method for coarse-graining. In addition to the projector operator formalism that has
proven to be fruitful, another commonly used analytical approach relies on the Ornstein–
Zernike equation [89] and the hypernetted chain closure [90, 91]. We will not discuss those
approaches here any further, but refer the reader to the above references and the references
therein.

Inverting the radial distribution functions g&r' to obtain pair potentials is another possible
starting point. The theoretical basis for that was given by Henderson [92], who stipulated
that under fixed conditions two pair potentials that give rise to the same g&r' cannot differ
by more than a constant. This constant is determined by the condition for the pair potential
that

V &r → $' → 0( (6)

where r is the interparticle distance. In this respect, this approach is analogous to the
Hohenberg–Kohn theorem [93], which states that all ground-state properties are determined
by the electron density. This theorem lies at the heart of modern DFT. It is important to
notice that the radial distribution function obtained from a simulation includes effects from
the many-body interactions. Furthermore, this way it is possible to define new interaction
sites and to compute the radial distribution function between them, and thus readily obtain
new coarse-grained models at different levels of description.

There are new simplex-algorithm based optimization procedures developed by Müller-
Plathe et al. [94–96] that exploit the above described relation. For an overview of the current
coarse-graining approaches in the field of polymer science, see, for example, Ref. [29, 32]
and references therein.

As a conceptually simple approach, the DPD [18–20] have recently gained lot of popularity
in soft matter simulations. We will discuss that approach in detail in the following text.
Other coarse-grained approaches that take hydrodynamics properly into account include
the lattice Boltzmann method (see, e.g., the article of Pagonabarraga in Ref. [28]) and
a novel and very promising approach developed very recently by Malevanets and Kapral
(MK) [12, 13]. The MK method couples a molecular-level description with a mesoscale
treatment of solvent-conserving hydrodynamics. This approach is particularly appealing for
studying dilute systems with hydrodynamics. Concurrently, it has been applied to a number
of problems, including studies of dilute polymer systems [97], individual colloids under flow
[13], diffusion of colloids [98], and crystalline clusters [99]. Malevanets and Yeomans have
further developed a variant of the MK method and applied that to study structural and
dynamical properties of individual polymer chains in a hydrodynamic medium [100, 101].
Recent developments of the technique are discussed in Refs. [102–107].

Before moving on to describe a few of the methods in detail, we would like to mention,
as a detailed discussion is out of scope of this review, that there are also other types of
developments. The coupling of quantum and classical systems is a new and exciting field and
can open entirely new avenues in biomolecular simulations. We refer the reader to the article
by Kalibaeva and Ciccotti in Ref. [28] for an in-depth discussion. Algorithmic developments
are an important issue, and we refer the reader to one of the new textbooks in the field
(e.g., the book by Leach [62]).

3.1. Effective Interactions: Inverse Monte Carlo

Conservative forces can consist of various kinds of forces [108] resulting from, for example,
electrostatic interactions, as well as descriptions of detailed intermolecular interactions such
as van der Waals forces. As suggested earlier, it is possible to obtain conservative forces
by coarse-graining the pairwise interactions from an MD simulation using, for example, the
Inverse MC (IMC) procedure [109] or the other procedures [31, 32] that are similar in spirit.

The IMC method bears a close resemblance to the Renormalization Group MC method
(see, e.g., the book by Goldenfeld [110]), in which one iteratively solves the renormalization



14 Modeling of Biologically Motivated Soft Matter Systems

constants. In IMC, one inverts the radial distribution functions, calculated in atomistic MD
simulations, to obtain the effective potentials for a coarse-grained model with a fewer num-
ber of degrees of freedom. The essential features of the IMC procedure were introduced by
Lyubartsev and Laaksonen in 1995; Ref. [109] contains the relevant computational details.

There are two aspects that we wish to point out. First, the effective potential includes cor-
rections from many-body interactions to the well-defined potential of mean force (PMF) [89],
which is defined as

V pmf&r' ≡ −kBT ln g&r' (7)

where r is the interparticle distance and g&r' the pair correlation function. Therefore, the
effective potential considered here is not the same as the PMF as defined by Eq. (7). Inclu-
sion of the many-body corrections is the reason why the iterative IMC scheme is needed.
Second, this procedure guarantees self-consistency; that is, the effective potentials, when
used in mesoscale (say, DPD simulations), lead to the same pair correlation behavior as
the underlying MD simulations. Thus, one can expect that certain response functions such
as compressibility are properly described by the effective potentials. This method can be
applied to studies of soft matter systems with full hydrodynamics.

3.1.1. The IMC: An Example of Inversion Methods
Next we will sketch the outline of the IMC procedure. As mentioned, there are other meth-
ods for using structural information to obtain interaction potentials. We have chosen to use
the IMC because it will be used to discuss a specific example later in Section 6.

Let us assume a simple system consisting of identical particles with pairwise interactions
only. Then we can write the Hamiltonian as

H =
∑

i<j

V &rij' (8)

where V &rij' is the pair potential and rij is the distance between the interaction sites i
and j . Let us further assume that we do not know V &rij' but we know the radial distribution
function g&rij', for example, from another simulation or experiments.

To obtain the interaction potential V &rij', we discretize the Hamiltonian such that the
interval *0( rcutoff- is divided into N grid points. We denote this discretized potential by V1

such that 1 = 1( 2 2 2 (N . With this discretization, we can approximate the the Hamiltonian
in Eq. (8) by

Hdiscr =
∑

1

V1S1 (9)

Here, we have introduced S1 as the number of pairs that have their interparticle distance
within the interval 1. Recalling the definition of the radial distribution function immediately
tells us that S1 is related to it through

&S1' ∼ 4"r2g&r1'N
2 (10)

Because S1 is related to the radial distribution function, and thus also the discretized poten-
tial V1, it is possible to write an expansion for S1 in terms of the discretized potential,

3&S1' =
∑

,

4&S1'
4V,

3V, + "&3V 2' (11)

Lyubartsev and Laaksonen [109] showed that the partial derivatives can be written in a
compact and computationally tractable way, thus allowing one to use the above expansion
for iteratively solving the discretized potential V1.

To solve for V1 in practice, one has to perform regular MC simulations of the system to
obtain &S1's. Then, solving V1 iteratively using Eq. (11), one obtains the interaction potential.
The procedure resembles solving a multidimensional nonlinear equation using the Newton–
Raphson method. The most natural starting point for the procedure is to use the potential
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of mean force as defined above. It is also worth noticing that this procedure provides us with
estimates of the uncertainty in V &r'. That can be formally done by eigenvalue analysis.

In Section 6, together with the DPD method, we will apply the IMC procedure to an
aqueous sodium chloride solution.

3.2. Dissipative Particle Dynamics (DPD)

DPD was originally developed by Hoogerbrugge and Koelman to solve hydrodynamic flow
problems in porous media. Since its introduction in 1992 [19, 20], DPD has become the most
used coarse-grained simulation method in soft matter research, and several extensions and
generalizations of DPD have been developed [21, 111–114]. Instead of porous media, DPD
has gained most of its merits in simulations of polymers and surfactant systems [115–117]
and, very recently, also in simulations of biological systems [10, 118–122]. To mention some
examples, DPD has been applied to problems ranging from liquid-gas phase diagrams [123],
to rupture of bacterial membranes [10], to self-assembly in Huntington’s disease [122], and
to packing of fillers in composites [124].

DPD is a coarse-grained method, and this is reflected in its interactions potentials, which
are “soft” in contrast to the Lennard–Jones-type potentials used in classical MD. This is
also where the strength and weakness of the standard (and the most used) version of DPD
lies. By “softness” in potentials, we mean that the DPD potential has a finite value at zero
particle separation (i.e., the Fermi exclusion principle is not accounted for). The standard
DPD potential is shown in Fig. 3.

As can be seen from Fig. 3, the only parameters concerning the potential are the cutoff
radius rc and the amplitude of the potential, 1ij . That this indeed is a reasonable approxima-
tion was shown, although in a slightly different context, by Forrest and Suter [9], who studied
polymeric systems and explicitly averaged over fluctuations to obtain effective interaction
potentials between monomers. They demonstrated that when averaged over sufficiently long
timescales, the averaged, or coarse-grained, potentials approach a quadratic form: this is the
form used virtually exclusively in DPD simulations. The underlying microscopic potentials
were of the usual Lennard–Jones type. We will present the functional form of the DPD
potential in the following subsection.

Despite its success, DPD does not come without problems and open questions. We will
discuss them in the following sections. We also briefly review the latest developments con-
cerning the inclusion of electrostatic interactions in DPD as well as novel and appealing
coarse-graining procedures, providing a more solid basis for DPD. The latter are an example
of true systematic coarse-graining linking MD to continuum representation.

0 rc
0

A

fo
rc

e

distance

Figure 3. The conservative force in the “standard” DPD is linear with the cutoff distance rc and the amplitudes of
the pairwise interactions being the only parameters.
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3.2.1. DPD Equations of Motion
Here we summarize the DPD equations of motion and discuss some aspects related to it.
After that, we put the method in a more general context. For algorithmic details, a com-
prehensive discussion of the performance, implementation, and quality of various DPD
integrators, we refer the reader to Refs. [125–127] and the references therein. For a more
application-oriented and detailed review by one of the pioneers of the field, please see the
article by Groot in Ref. [28].

One of the key ideas and motivations behind DPD is that it conserves hydrodynamics (i.e.,
all the interactions are pairwise conservative). In DPD the total pair force consists of three
components; dissipative, random, and conservative. Thus, the force exerted on particle i by
particle j can be written simply as

"Fij = "F D
ij + "F R

ij + "F C
ij (12)

We start the discussion from the dissipative and random forces. In the standard notation,
they are given as

"F D
ij = −,+D&rij'&"vij · "eij'"eij and

"F R
ij = /+R&rij'5ij "eij(

(13)

where "rij ≡ "ri − "rj , rij ≡ )"rij ), "eij ≡ "rij/rij , and "vij ≡ "vi − "vj for particles with positions "ri
and velocities "vi. The 5ij are symmetric Gaussian random variables with zero mean and
unit variance and are independent for different pairs of particles and different times. The
pairwise conserved fluctuations can be easily justified, as two particles being close enough
to each other experience the same fluctuations.

Equations (13) contain two amplitudes , and / and two weight functions +D&rij' and
+R&rij'. The amplitudes define the strengths, and the weight functions the spatial extent, of
the dissipative and random forces. The specific functional form of the weight functions is
not specified, and any physically motivated choice can be used. In contrast to this freedom
concerning the functional form, the two weight functions, as well as the amplitudes, are
coupled via a fluctuation–dissipation relation.

The coupling of the dissipative and random forces "F D
ij and "F R

ij is the result of the fact that
the thermal heat generated by the random force must be balanced locally by dissipation. The
precise relationship between these two forces is determined by the fluctuation–dissipation
theorem [18], which sets the following two conditions for both the weight functions and the
amplitudes of the forces in Eqs. (13),

+D&rij' = *+R&rij'-
2 and /2 = 2,kBT

∗( (14)

where T ∗ is the canonical temperature of the system.
The most common choice for the weight functions +D and +R is the soft-repulsive form

+R&rij' =
{

1 − rij/rc for rij < rc6

0 for rij > rc(
(15)

where rc is the cutoff distance and +D&rij' is given by the fluctuation–dissipation relation
above. It is somewhat surprising that, at least to the authors’ knowledge, no other forms for
the weight function have been used in published literature.

Thus far we have not said anything quantitative about the conservative force. To be precise,
the DPD formulation does not specify its functional form. In principle, one is free to use
any physically motivated choice, van der Waals forces, electrostatic interactions, or some
coarse-grained interactions. The term DPD often refers to above formulation for random
and dissipative forces, combined with the soft repulsive potential given as

"F C
ij = F &c'

ij &rij'"eij( (16)
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where F &c'
ij &rij' = #+&rij'. The parameter # is the amplitude of the force, and it can be

defined via compressibilities or using Flory theory for polymers. For a detailed discussion,
see the article by Groot in Ref. [28]. The force and the potential are plotted in Fig. 3.

What is usually referred to DPD is defined by Eqs. (13), (15), and (16) together with
fluctuation–dissipation in Eq. (14). This definition is rather restrictive, as the dissipative and
random forces are independent of the conservative force. This fact has been recognized by
many authors, and it is appealing to think of DPD as a momentum-conserving thermostat
[11, 111, 126, 128], as we will discuss in the next section.

The above formulation is the universally accepted and exclusively used form of DPD
derived by Español and Warren [18] using a Fokker–Planck equation. It is also worth pointing
out that the original DPD formulation by Hoogerbrugge and Koelman does not obey the
fluctuation–dissipation theorem and hence does not relax to the canonical distribution, as
required by thermodynamical equilibrium.

3.2.2. DPD as a Thermostat
As already mentioned in the previous section, DPD can be defined as a momentum-
conserving thermostat for MD simulations. Earlier we defined DPD as a momentum-
conserving coarse-grained MD using conservative potentials as given in Eq. (16). That is
indeed the standard phenomenology, but it would be more appropriate to use the term DPD
for a momentum thermostat defined by Eqs. (13) and (14) and the weight functions, for
example, by Eq. (13).

These aspects have been recently studied in detail by Vattulainen et al. [126, 127] for
general Lennard–Jones systems, and by Soddemann et al. [128], who showed the usefulness
of the DPD thermostat also in nonequilibrium MD simulations.

Another problematic aspect with DPD has been the treatment of electrostatics. As it is
easy to understand from the softness of the potentials, electrostatics needs special attention.
This issue has been resolved by Groot [129, 130]. The idea is that the charges are smeared
out and then the electrostatic field is solved in a grid. From the computational point of view,
this approach is close to the multigrid method introduced by Sagui and Darden [131, 132].
Groot was also able to show that his approach is consistent with the Stillinger–Lovett sum
rules, and thus it provides a sold basis for treating the electrostatics properly. It is likely that
this will increase the usefulness of DPD in biomolecular simulations.

3.2.3. An Alternative: The Lowe–Andersen Thermostat
A different formulation for DPD was given by Lowe [133]. His approach is based on the
thermostat developed in 1980 by Andersen [134]. The Andersen thermostat is different from
other MD thermostats, as in this approach the velocities are periodically drawn from a
Maxwell distribution. This formulation is computationally quite efficient, although it does
not conserve momentum. Lowe [133] used the Andersen thermostat as a starting point and
devised a momentum-conserving thermostat out of it. The idea here is that one chooses
a parameter that describes the frequency (7 in Lowe’s original notation) for a particle to
interact with the heat bath. Then, 70t, where 0t is the time step, defines a probability for
thermalization. This thermalization is done in a pairwise fashion, such that the method is
momentum conserving, and it also produces the correct canonical distribution. One of the
main advantages of this method is that it enhances viscosity and allows proper tuning of the
Schmidt number, which is the ratio between kinematic viscosity and the diffusion coefficient.

Lowe’s approach is appealing: There are no dissipative forces, and thus Lowe’s approach
is easier to use and performs well. The thermalization rate may be varied over a wide range,
which implies that the dynamical properties of the system can be tuned in a controlled
fashion. It is rather surprising, though, that in addition to Lowe’s original article, there is
only one other published work using this method [126].

3.2.4. A DPD Example: Liposome Formation
To give a brief illustration of a DPD simulation using the soft potentials as defined in
Eq. (16), we have studied vesicle formation and dynamics [135]. The lipid molecules consist
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of eight DPD particles, of which two belong to the headgroup, and the rest are divided
equally between the two tails. The system illustrated in Fig. 4 has a total of 500 lipids and
188 000 waters (i.e, 228 000 DPD particles in total).

The amplitudes of the conservative force [i.e., the parameters # in Eq. (16)] between
different species are shown in Table 1. In addition, the description of lipids included a
harmonic freely jointed spring.

The simulation started with the formation of a stable bilayer. After that, the simulation
was halted, allowing us to add a major amount of excess water around the bilayer. On this
happening, the system was simulated under NVT conditions such the bilayer had to deform
to a vesicular shape. This process and the formation of a spherical bilayer structure is clearly
visible in Fig. 4. We are currently studying the dynamics of related vesicle systems.

3.2.5. Analytical Approaches: Systematic Derivation of DPD
The standard DPD as presented above is phenomenological. A very interesting formal
approach has recently been presented by Flekkøy et al. [8, 21], who were able to formally
link DPD to molecular level properties. They use a Voronoi tessellation–based technique to
establish a systematic coarse-graining procedure that couples molecular dynamics to DPD
and provides a systematic connection between continuum and particle representations. The
great advantage that this method has is that it can be used to resolve different length scales
simultaneously. The method is formally akin to the well-known renormalization group pro-
cedure extensively used in analytical treatment of critical phenomena. As such, this coarse-
graining procedure provides a true systematic and tunable method. For details about the
renormalization group procedure, see, for example, the book by Goldenfeld [110]. The math-
ematical details can be found from the original articles as cited above.

The approach of Flekkøy et al. provides a systematic and computational tractable,
although not straightforward, method to coarse-grain molecular systems. From a computa-
tional point of view, their method is more demanding than particle-based methods such as
the standard DPD, as the Voronoi tessellation procedure requires N logN operations and
it comes with fairly large additional prefactor.

Although not connected directly to DPD, we mention here another general method called
GENERIC, introduced by Grmela and Öttinger [25–27]. The idea is that there is a general
form for the time-evolution of nonequilibrium systems and that it can be written in a general
form

dx

dt
= L&x'

0E&x'

0x
+M&x'

0S&x'

0x

Figure 4. Formation of a vesicle in a DPD simulation [135]. The surrounding 188 000 water molecules have been
removed for clarity. The lower panels show the corresponding cut through the middle of the vesicle during the
formation process.
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Table 1. Amplitudes of conservative interactions used in the present
dissipative particle dynamics simulations for liposome formation.

Head Tail Water

Head 100 160 100
Tail 160 100 160
Water 100 160 100

where x characterizes the state of the system, L&x' is an antisymmetric matrix, and M&x'
is a symmetric and positive definite matrix. They are connected to the second and the first
law of thermodynamics, respectively. The terms E&x' and S&x' are functionals for the total
energy and entropy, respectively.

The equation above is the so-called GENERIC form, which uses the Poisson bracket and
projection operator formalism to connect different levels of description. The basic ingre-
dients of the theory are the energy and entropy functionals, which are the generators for
reversible (energy) and irreversible (entropy) dynamics and the corresponding matrices.

The mathematical details are somewhat lengthy, and we refer the reader to the original
articles [25–27] and the review by Español in Ref. [28], which discusses analytical approaches
to coarse-graining at length.

3.3. Field Theoretical Methods

In contrast to the particle-based coarse-grained methods, the central idea of phase-field mod-
eling is to provide a continuum description of a system using general symmetry principles,
conservation laws, order parameters, and a free-energy functional. The name phase-field was
coined by G. J. Fix [136] in 1982, but the approach itself is older [137]. This approach has
several attractive features. First, it operates in meso- and macroscales, thus enabling studies
of time- and length scales that would otherwise be difficult to reach. Second, it is suitable for
describing out-of-equilibrium systems and interfaces between different phases that appear
naturally in this approach. Third, it is possible to use projection operator techniques to study
these systems using analytical theory.

Phase-field models have been used extensively in connection with problems involving
nucleation and growth and spinodal decomposition (see, e.g., Ref. [138, 139]). In materials
science, it has been used to study the properties of such diverse systems as directional solid-
ification [140], morphological instabilities [141], eutectics [142], and charge-density waves
[143], to mention a few examples. Surprisingly, the phase-field approach has received very
little attention in soft matter problems, although it has great potential addressing questions
related to macroscopic behavior. For details of phase-field models in a general context, we
refer the reader to the recent article by Ala-Nissila et al. [22]. In the following text, we will
describe the physical basis of this approach.

3.3.1. Landau Theory of Continuous Phase Transitions
The phase-field approach is based on Landau’s theory of phase transition. Thus, the system
is defined by an order parameter reflecting local order in the system. It can be, for example,
a density difference between different liquids. From that it is clear that the order parameter
is by definition a coarse-grained quantity. As such it does not include any information about
the molecular details of the system. For the Ising model, one can perform a formal mapping
to obtain the order parameter, which in that model is the magnetization of a block.

The Landau theory of continuous phase transitions is phenomenological and stresses the
importance of overall general symmetry properties and analyticity over microscopic details
in determining the macroscopic properties of a system; an excellent discussion is given in
Ref. [110]. The validity of this approach is based on the following assumptions.

First, it is possible to define an order parameter # , that characterizes the order in the
system in the following way: # = 0 in the disordered state (above the critical temperature
Tc), and # is small and finite in the ordered state (below Tc).
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Second, it is possible to describe the system with a free energy. Close to Tc, it can be
expanded in powers of the order parameter; that is,

F &#' =
$
∑

n=0

a2n#
2n (17)

where F is the free energy and the expansion coefficients are phenomenological parameters
that depend on temperature and the microscopic properties of the system under consid-
eration. Therefore, at least in principle, the a2n can be derived from first principles. The
smallness of the order parameter guarantees that the expansion converges and can be trun-
cated at a finite power.

Third, the expansion, Eq. (17), of the free energy must be consistent with the high temper-
ature symmetry properties of the system under consideration. Because the Landau theory
describes continuous transitions, no odd powers are allowed in the expansion of the free
energy. When the system is cooled down to T < Tc, there is a spontaneous symmetry break-
down. This means that the ground state of the system has lower symmetry than the free
energy shows: States +#0 and −#0 are equivalent, but the system must select one of them
(see Fig. 5). Mathematically speaking, the Hamiltonian must commute with the symmetry
group of the high-temperature phase.

Fourth, the free energy must be analytic. In addition to analyticity in # , it is also required
that the expansion coefficients be regular functions of the temperature. Because the second-
order term is dominant, a2&T ' must vary smoothly from a2&T ' < 0 for T < Tc, to a2&T ' > 0
when T > Tc, with a2&T = Tc' = 0. This implies that a2&T ' ∼ &T − Tc'. To see this, we first
minimize the free energy with respect to # ,

4F

4#
= 2a2# + 4a4#

3 = 0 (18)

The solutions are

#0 = 0 and #0 =
√

− a2

2a4
(19)

The first is the high-temperature solution, and the latter provides the minima for T < Tc.
From Eq. (18), we can see that a4 must be greater than zero, as otherwise # → $ would
minimize the free energy, rendering the above construction useless. Next, we Taylor expand
the expansion coefficients around Tc:

a&T ' ≈ a&Tc'+ &T − Tc'
4a&T '

4T

∣

∣

∣

∣

T=Tc

+ 1
2!&T − Tc'

2 4
2a&T '

4T 2

∣

∣

∣

∣

T=Tc

+ · · · (20)

and

a4&T ' ≈ a4&Tc'+ &T − Tc'
4a4&T '

4T
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+ · · · (21)
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Figure 5. Schematic picture of the Landau free energy. Upon cooling below Tc the system undergoes a spontaneous
symmetry breaking.
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As argued above, a4&T ' > 0, and therefore we can approximate a4 = a4&Tc' = const. This
requirement is enough to guarantee the finiteness of the order parameter. Then, a2&T ' must
change its sign on cooling below Tc. Then,

4a2

4T

∣

∣

∣

∣

T=Tc

= const. > 0 (22)

and a2&T ' ∼ &T − Tc'.
The Landau theory is a mean-field theory because it does not take into account spatial

inhomogeneities or thermal fluctuations. To account for inhomogeneities, we have to let
the order parameter to become space dependent [i.e., # ≡ #& "x']. Conceptually, we should
think of # as a coarse-grained order parameter; that is, # is defined only over a certain
length scale. We must define a short wavelength (ultraviolet) cutoff for # in such a way that
# varies smoothly in space; the order parameter cannot fluctuate on smaller length scales
than the cutoff. In practice, the cutoff may often be thought of as the lattice spacing.

The response of the system to spatial inhomogeneities can be described as internal rigidity;
Anderson [144] provides an in-depth discussion about the emergence and importance of
rigidity in physical systems. Physically, it is clear that large differences between neighboring
points are unfavorable. In other words, rigidity is a generic property of the system, and
therefore there must be an energy cost associated with spatial inhomogeneities. Because
the order parameter is a smooth and slowly varying function, we can take the rigidity of
the system into account by making a gradient expansion and retaining only the lowest-order
term compatible with the symmetry properties. The validity of the truncation of the gradient
expansion depends on the smoothness and slowness of the order parameter variations.

Because the order parameter is now a local variable, the free energy in Eq. (17) becomes
a functional of # ,

$ *# - =
∫

dd "x
[

F &#'+ 1
2
K&8#'2

]

(23)

where K is a phenomenological parameter describing the rigidity of the system and F &#' is
the free energy defined in Eq. (17). Equation (23) is also known as the Ginzburg–Landau–
Wilson free energy. Clearly, in Eq. (23), K must be positive for the free energy to be bounded
from below.

3.3.2. Dynamical Models
The above description does not include time dependence. How time dependence can be
added is to use linear response theory and assume relaxational dynamics (i.e., the system
is dissipative and it is driven to equilibrium; see Fig. 5). The resulting models are often
described as models A, B, C, and so on, depending on their symmetry properties, the dimen-
sionality of the order parameter, and the conservation laws [137].

Being the simplest, model A serves as an example. It is a nonconserved system, and the
equation of motion can be given as

4#& "x( t'
4t

= −7
0$ *#& "x( t'-
0#& "x( t' + 9& "x( t' (24)

where we have included thermal fluctuations as Gaussian random noise, with the first and
second moments defined as

&9& "x( t'' = 0 (25)

and

&9& "x( t' 9& "x′( t′'' = 27kBT0& "x − "x′'0&t − t′' (26)

The angular brackets denote an average, and 7 is a kinetic coefficient describing the relax-
ation rate. An example of the evolution of a system described by model A is given in Fig. 6.
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Figure 6. Phase separation in model A described by Eq. (24). The panels from left to right show the evolution of
the system from random initial conditions towards equilibrium. Periodic boundary conditions are clearly visible.

Other models can be obtained by including conservation laws; for example, the dynamical
equation of motion for a conserved order parameter is given by model B,

4#& "x( t'
4t

= 78

[

0$ *#& "x( t'-
0#& "x( t' + 9& "x( t'

]

(27)

This can be derived using the continuity equation.
The system may have several order parameters that are coupled, thus leading to more

complicated free energies and equations of motion; see Ala-Nissila et al. [22] and references
therein.

It is rather surprising that this type of approach has, thus far, had only limited attention
in soft matter and biological modeling. There are a few notable exceptions, though. Shore
et al. [145, 146] coupled a phase-field model to the Navier–Stokes equation, including vis-
coelasticity to melt fracture in polymer extrusion experiments. The details of that model are
beyond this review, but it suffices to note that the study of Shore et al. is a good example
of the power of the phase-field approach, as it provides physical insight into (in this case,
instabilities) both fundamentally and industrially important problems.

Other examples of the use of field theoretical models in soft matter include the OCTA
software package, which in one of its parts uses self-consistent field theory from the Nagoya
group [39, 40]. Self-consistent field theory has been used in the theoretical description of
polymers for a long time. A very recent example of the developments in that field is the
elegant study of tetrablock copolymers by Drolet and Fredrickson [147].

Another major effort to build modeling software around field-theoretical ideas is the
MESODYN project of the Leiden group [24, 148]. They use the Ginzburg–Landau approach
and DFT to build a systematic and computationally tractable system for polymer melts.
A detailed description is again beyond this review, but with their approach it is possible to
study phase separation even in three dimensional systems. This approach is closely related
to model B of critical dynamics [137], as discussed above.

4. METHODOLOGICAL ISSUES IN MOLECULAR SIMULATIONS
One of the intriguing issues in science is indeed that there is the artistic side, too: The art of
doing science. In the field of molecular simulations and computational sciences, this is largely
related to the inventions and new ideas of seeing things done in an accurate but efficient
manner. This brings us to the methodological side of doing molecular simulations. In this
section, we consider a few aspects related to both atomistic and coarse-grained descriptions
of molecular systems that illustrate the importance of developing the methodology.

We discuss three highly important methodological issues whose role for the reliability and
accuracy of molecular simulations is particularly significant. First, especially for MD simula-
tions of biologically relevant soft matter systems on atomic level, the treatment of long-range
electrostatic interactions is a major issue. If this is not handled with care, the interpretation
of simulation results may be very problematic because of the underlying artifacts caused by
the mistreatment of electrostatics. Second, as all stochastic simulation methods are based
on the use of noise produced by so-called pseudorandom number generators, the quality
of pseudorandom number sequences is of prominent importance in all cases in which they
are employed to generate the dynamics for the systems under study. Because pseudorandom
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number generators produce deterministic rather than unpredictable sequences of numbers,
the “randomness” of pseudorandom numbers is a very subtle issue and should never be
taken for granted. Finally, we discuss an old issue that had been thought to be overcome
several years ago: the artifacts resulting from integration schemes that yield the dynamics for
systems governed by Newton’s equations of motion. In contrast to classical MD, where this
issue is well under control, in stochastic simulation techniques such as dissipative particle
dynamics, the case is more subtle. Here we discuss most recent developments in this field
and show how the problems can be overcome in an efficient and reliable fashion.

4.1. How to Handle Long-Range Electrostatic Interactions

Electrostatic interactions are an inherent part of all biologically relevant soft matter sys-
tems. For example, the behavior of water is to large extent driven by hydrogen bonds, in
which electrostatics plays an important role. In the same spirit, the stability of proteins and
DNA is largely based on hydrogen bonding. DNA, in particular, is a prominent example of
the importance of electrostatics because it is probably the most charged molecule found in
living systems. Other examples including the self-assembly and overcharging of DNA-lipid
complexes [79, 80, 149–153] are therefore obvious and lead naturally to a wide class of bio-
logically important systems composed of lipid molecules. The most important entities in this
context are cell membranes that surround the cell. In addition to protecting it, cell mem-
branes provide a heterogeneous, semipermeable, and fluidlike environment for numerous
processes [154–158] facilitated by ion channels and other proteins embedded in or attached
to membranes, thereby, for example, governing the transport of molecules and ions across
a lipid membrane.

The importance of electrostatics in membrane systems can be demonstrated by a prac-
tically relevant example. Of the many techniques available for the introduction of genetic
material into cells, many are based on nonviral delivery vectors composed of cationic lipo-
somes. Understanding the properties of complexes composed of cationic membranes and
DNA is therefore largely based on the understanding of the electrostatics associated with
these systems. From the point of view of molecular simulations, it is hence crucial to treat
long-range electrostatic interactions as accurately as possible.

Techniques available for this purpose are wide and include, for example, Ewald summa-
tion techniques [76] based on solving the Poisson equation for the electrostatic potential in
a periodic system in a fashion in which all charged particles and their periodic images are
accounted for systematically. The Particle–Mesh–Ewald (PME) technique [60, 159], specifi-
cally, has found increasing popularity in MD studies of soft matter systems. Other commonly
used techniques include the fast multipole method [60, 160], the reaction-field technique, and
truncation methods. The truncation method is particularly appealing because it leads to con-
siderable reduction in the computational load. As a consequence, it is frequently used when
computational requirements are substantial because of large system sizes or long timescales,
which may be the case, for example, in studies of lipid–protein systems [161], self-assembly
of lipids [162], and membrane fusion [163]. There is reason to emphasize, however, that the
accuracy of electrostatics should not be sacrificed at the expense of speed.

The key point here is that the results based on MD simulations of biophysical systems
depend on the scheme chosen for electrostatics. It has been shown that the truncation of
electrostatic interactions may affect structural properties of systems like water [164–168],
peptides [169, 170], proteins [171], and DNA [172, 173]. Here we demonstrate and discuss
this issue in the context of lipid bilayers.

4.1.1. Model of a Dipalmitoylphosphatidylcholine Bilayer
We discuss this issue in a one-component lipid bilayer consisting of N = 128 dipalmitoylphos-
phatidylcholine (DPPC) molecules at 323 K (see Fig. 7); which is above the so-called main
phase transition temperature Tm. The temperature Tm is characteristic to any lipid species
and depends on various molecular details such as the headgroup and the length and sat-
uration of lipid acyl chains. The main transition temperature characterizes the transition
for the pure one-component lipid system between the high-temperature liquid-crystalline
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Figure 7. Representation of a saturated phospholipid molecule (left) and a lipid bilayer made of 128 dipalmi-
toylphosphatidylcholine and 3655 water molecules (right).

(also called liquid-disordered) phase and the low-temperature solid-ordered phase. The two
phases are distinctly different in nature, as the high-temperature phase above Tm is charac-
terized by the absence of any translational order in the plane of the membrane, as well as
the absence of conformational ordering of the acyl chains. In contrast, the low-temperature
phase below Tm is solidlike because of the translational order in the bilayer plane, in addi-
tion to which the acyl chains are highly ordered. In this work, in which we consider the
DPPC bilayer at 323 K above Tm = 315 K, we are therefore in the high-temperature liquid–
crystalline phase.

The bilayer is fully hydrated by 3655 water molecules, for which we used the single-point
charge (SPC) model [174]. The choice of initial configuration and force fields is discussed
in Ref. [175].

For electrostatic interactions, we discuss here the two most commonly used techniques.
First, we consider group-based long-range electrostatic interactions handled by using an
abrupt cutoff at the truncation distance rcut. For rcut, commonly used values in lipid mem-
brane simulations range from 1.2 to 2.0 nm. Here we consider a number of values in the
same range, with an objective to find possible trends in the limit where the truncation dis-
tance is as large as possible compared to the linear system size. To this end, we have chosen
rcut = 128, 2.0, and 2.5 nm.

In addition to truncation, we discuss the PME [60, 159] technique that takes the long-
range interaction fully into account through Ewald summation rules. Although it has been
shown that PME suffers from certain drawbacks as a result of the periodic nature of the
simulation box, the PME method has been found to work well in various soft matter systems.
Thus, it is used as a reference in this work.

It is worthwhile to emphasize that the present choice of interactions, time steps, ther-
mostats and barostats, and the choice to use the twin-range scheme for long-range interac-
tions, follows the practice made in numerous MD simulations of lipid bilayers. In particular,
this approach follows the choice made for a DPPC bilayer in the pioneering works by Berger
et al. [176] and Tieleman and Berendsen [177].

4.1.2. Area Per Molecule in a Lipid Bilayer
In lipid membrane systems, the area per molecule is perhaps the most central quantity.
From the experimental point of view, it is one of the few quantities that can be determined
rather accurately. In addition, the area per molecule is closely related to the ordering of
lipid acyl chains in the hydrophobic part of the membrane, and area fluctuations in turn are
related to a number of processes such as permeation through membranes, hole formation,
and lateral diffusion of lipids and other molecules in the plane of the bilayer. To investigate
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the influence of electrostatic interactions on the structural properties of lipid membranes,
we therefore focus here on the area per lipid.

Results in Fig. 8 illustrate the time dependence of the area per DPPC molecule A&t' over
a timescale of 50 ns. As the equilibration of A&t' takes about 10 ns, it is reasonable to dis-
card this part of the trajectory and use only the last 40 ns for analysis. The simulations using
PME then yield &A' = &02655± 02010' nm2. This result is consistent with recent experiments
summarized by Nagle and Nagle [157], which for DPPC give &A' = 0264 nm2. Truncation
at 2.5 nm reduces the size of the bilayer by about 8% compared to the PME result, giv-
ing &A' = &02604 ± 02009' nm2. Further decrease of the cutoff distance to 2.0 nm leads to
&A' = &02582 ± 02027' nm2. Finally, the smallest truncation distance of rcut = 128 nm consid-
ered here yields &A' = &02551± 02005' nm2. Without doubt, this result deviates substantially
from the PME result. Figure 8 also reveals that if the scheme is changed from truncation
at 1.8 nm to PME, the behavior of &A' rapidly evolves to the limit found for PME (see the
dashed curve in Fig. 8 that starts at t = 10 ns). Thus, the deviations between the results for
different schemes are solely the result of electrostatics, and not caused by initial conditions,
for example.

Other simulation studies both in the low-temperature gel phase [178] and in the high-
temperature fluid phase [179] are consistent with these findings. The study by Anézo et al.
[179] is exceptionally revealing, as it covers a wide range of different electrostatic schemes
and demonstrates the sensitivity of the area per lipid on the scheme chosen for electrostatic
interaction.

The interactions used in the above systems have been completely similar in all cases,
except for the scheme chosen for the long-range electrostatic interactions, yet the deviations
between different model systems have been surprisingly large. To gain a better understanding
of the reasons that lead to the above differences, we next focus on the most central quantity
in all condensed and soft matter systems (i.e., the radial distribution function).

4.1.3. Radial Distribution Functions
The radial distribution function (RDF), g&r', describes the probability of finding a pair
of atoms a distance r apart, relative to the probability expected for a completely random
distribution at the same density [61]. For the ideal gas characterized by the absence of con-
servative interactions, the RDF is therefore equal to 1 for all distances r . Interacting systems
in turn are characterized by peaks and valleys that describe regions of high and low density,
respectively. Hence, the RDF is an excellent means to gauge the ordering of any system.

Figure 9 shows the intermolecular RDF’s between the nitrogen (N) atoms in the DPPC
headgroups in a lipid bilayer. We find that the results for the PME technique are as expected,
as in that case there is a strong main peak at about 0.85 nm and essentially no structure
beyond 1.5 nm. This is consistent with the liquid–crystalline phase in which the lipids are
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Figure 8. Temporal behavior of the area per molecule in a model system of a DPPC bilayer. Adapted from
Ref. [175].
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Figure 9. Radial distribution function for intermolecular N–N pairs in the headgroups of the dipalmitoylphos-
phatidylcholine molecules. Note the peaks exactly at the truncation distance. Adapted from Ref. [175].

in a fluid-like state, characterized by the lack of long-range ordering in the plane of the
membrane. The truncation techniques, in contrast, lead to pronounced peaks exactly at the
truncation distance. For the truncation distance of 1.8 nm, the RDF has a prominent peak
exactly at 1.8 nm. When the truncation distance is increased, the peak moves accordingly.

The above finding gives rise to major concern as it indicates that the truncation of electro-
static interactions may change the phase behavior of the system. As a matter of fact, this is
the case, as was shown by Patra et al. in Ref. [175] for the RDF between the centers of mass
positions of the lipids. The artificial ordering resulting from truncation leads to unexpected
peaks that are entirely unphysical, thus changing the phase behavior of the membrane from a
liquid–crystalline to some semi-fluid-like phase characterized by ordering at the length scale
of the truncation distance. At the same time, the PME method does not yield any structure
of the same kind.

Without any doubt, the above artifacts in structural quantities are the result of the fact
that the truncation method does not account for the long-range component of electrostatic
interactions. Apparently, the truncation of electrostatic interactions gives rise to artificial
ordering in the bilayer plane, thus changing the phase behavior of the system. Although
related artifacts have been observed in a number of different soft matter systems, the arti-
facts seem to be more pronounced in lipid membranes. Why so? To address this question, let
us first recall that the dielectric constant of water is about 80. This implies that long-range
interactions in water are strongly screened. Inside the membrane, however, the dielectric
constant is about 2–4, and in the vicinity of the water-membrane interface it is about 20–40.
Screening of long-range interactions in a membrane is therefore considerably weaker com-
pared with pure water, thus enhancing the magnitude of artifacts compared to water-like
systems. Second, it has been found that the energetic cost of changing the area per lipid in
a membrane is very small, on the order of thermal energy [180], which implies that even
minor changes in electrostatics may lead to substantial changes in the area of the membrane.
As numerous both structural and dynamical quantities are influenced by the (excess) area in
a membrane, it is therefore understandable how they are so strongly influenced by the choice
of electrostatics in lipid membrane simulations. Clearly, this is a major issue and warrants
particular attention in large-scale simulations.

4.1.4. Discussion on Ways to Handle Electrostatic Interactions
The above example demonstrates that the choice of a scheme for electrostatic interactions
may dramatically affect the structural properties of lipids in a DPPC bilayer. Recent studies
in the same lipid bilayer system [181] have further shown that dynamical properties such as
lateral and rotational diffusion are equally sensitive to the choice of electrostatics. Now, of
course, we can claim that the above findings are specific to this system rather than being
generic and holding true in a variety of different lipid membrane systems. On one hand,
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the idea of the specific nature of our findings is true: The influence of the electrostatic
scheme on the structure and dynamics depends on the force field and other practical details
chosen for the model. However, on the other hand, we may also conclude that the results
discussed above are by and large generic. In particular, for the truncation methods, the
location of artificial peaks found exactly at the truncation distance in the radial distribution
functions is the most clear example to support this view. More generally, although this
discussion has centred on lipid membranes, it is likely that similar kinds of findings would
be faced in many other soft matter systems such as membrane-DNA complexes and systems
composed of proteins and other solutes embedded in or attached to membranes. As we
prefer to be on the safe side, we conclude that the truncation of electrostatic interactions
should be avoided, if possible.

Having made this conclusion, let us ask ourselves why the truncation method has been used
in the first place, and why it is still rather popular in large-scale simulations. The answer lies
in the computational cost associated with handling electrostatic interactions. In this model
system composed of a DPPC bilayer in water, the computational cost of using PME is larger
by a factor of 1.8 compared with truncation at 1.8 nm. In large-scale simulations, where the
computations may take several months (or even years) of CPU time, this is a major issue.
In the absence of better techniques, the truncation distance is therefore still commonly used
in systems where the computational load is excessive.

Recent studies may provide a better solution to this situation, however: The reaction-
field technique [61]. In the reaction-field method, electrostatic interactions are explicitly
accounted for up to some truncation distance (typically about 1.0–1.5 nm), beyond which the
remaining long-range contribution is described by a reaction field correction using a single
dielectric constant. Whereas the origin of this method goes back to the days of Onsager in
the 1930s, it is still a reasonable and relatively useful choice for treating long-range inter-
actions in an efficient and rather accurate manner. Of course, as the reaction-field method
is typically implemented using a single dielectric constant through the whole system, it may
be problematic in nonisotropic cases such as water-membrane systems and other interfaces.
Further work would therefore be highly welcome for developing the RF approach in this
respect. Nevertheless, we are confident that the reaction-field method offers a safer choice
than the methods based on an abrupt truncation of electrostatics. This conclusion is sup-
ported by recent studies by Anézo et al. [179]. Recent investigations on a DPPC bilayer
system provide further support for this idea [181, 182], showing that the artifacts in RDFs
can be largely avoided by using the reaction-field technique instead of truncation. Yet, the
computational load of the RF approach is comparable to the truncation technique.

Despite the above discussion, we wish to conclude that approaches such as the PME tech-
nique are currently the method of choice, if the computational load is not a limiting factor.

4.2. Role of Random Numbers in Parallel Stochastic Simulations

Perhaps surprisingly, random numbers are used extensively in numerous both scientific and
practical applications. Stochastic simulations in physical sciences [60, 183, 184] characterize
this fact very well. There, where the aim is to model complex systems over large length
and timescales, atomistic approaches such as classical molecular dynamics are therefore no
longer feasible. Examples of such stochastic techniques include the MC method, Brownian
dynamics simulations, and DPD, all of which use pseudorandom numbers to generate the
dynamics of model systems under study. Because of the deterministic nature of pseudoran-
dom numbers, it is obvious that if there are any significant correlations within pseudorandom
number sequences, then the dynamics of these model systems will be biased and the reliabil-
ity of the whole approach may become questionable. To avoid such concerns, pseudorandom
number generators should be thoroughly tested before extensive use in model simulations.
This is particularly true as regards stochastic simulations in a parallel environment and in
large-scale studies of soft matter systems, where the number of random numbers used is
typically huge.

Below, we consider these two topics side by side. We first discuss recent ideas [185] on
how to test the quality of random numbers in parallel applications in terms of random walks.
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As it turns out, this approach is both simple and efficient and is able to reveal correlation
effects in a number of commonly used pseudorandom number generators. Second, we study
the effects of the quality of random numbers on DPD simulations [11, 17–19], which are
based on solving Newton’s equations of motion in the presence of a stochastic force com-
ponent. The results indicate a few promising generators whose performance in the present
tests is rather remarkable.

4.2.1. How to Test Parallel Random Number Generators by
Random Walks

Parallel computing and parallel random number generation have been active fields of
research for a relatively long time. With the exception of a few interesting studies [186–188],
much less attention has been devoted to design tests, which are specifically suited for gauging
correlations in parallel random number generators. This is partly the result a great number
of general test methods that have been developed and used during the last few decades [47].
In this general approach that is common to numerous standard tests, correlations are looked
for from a very long random number sequence $xi%. This approach works very well in serial
computing, where the whole random number sequence is used on a single CPU. In parallel
applications, however, the case is more complicated. Then it is more practical to consider
relatively short subsequences $xi%

&k', i = 1( 2 2 2 (:k, where subsequences k = 1( 2 2 2 (m do
not overlap and are used on distinct CPUs during the calculation, as the task is distributed
as subtasks between a number of different computing units. Obviously, the interest is now
on cross-correlations between distinct random number sequences $xi%

&1'( 2 2 2 ( $xi%
&m'. To

study such effects, one needs specific approaches that gauge long-range correlations between
blocks of random numbers.

We consider this problem in terms of random walks, which are a common tool in a variety
of disciplines, including physics, chemistry, biology, and economics. We use random walks
to characterize the quality of random numbers in parallel calculations. The key idea is to
consider a number of diffusing random walkers, each of which is governed by a distinct
random number sequence. Through studies of their mutual correlations we are then able
to characterize and quantify possible correlations between separate pseudorandom number
sequences. To this end, we calculate quantities, such as intersection probabilities between
different random walks, and compare their asymptotic behavior to known theoretical limits.
The difference between simulation results and theoretical predictions serves as a measure
of correlations in the random number generator under study.

In the following, we briefly describe three tests [185] that are based on this idea.
They study both correlations within a single random number sequence $xi%

&k' and cross-
correlations between distinct random number sequences $xi%

&1'( 2 2 2 ( $xi%
&m'. The sequences

$xi%
&k' are generated by the pseudorandom number generator in question from $xi% =

x1( 2 2 2 ( x:( x:+1( 2 2 2 ( x2:( 2 2 2 such that we obtain nonoverlapping sequences $xi%
&1' =

x1( 2 2 2 ( x:, $xi%
&2' = x:+1( 2 2 2 ( x2:, and so on. Here we consider the case where the sizes

:k of sequences $xi%
&k' are equal for all k. Random numbers xi are uniformly distributed

between zero and one.

4.2.2. Tests Based on Random Walks
In the height-correlation test, we consider the position yi of a one-dimensional random
walker versus the number of jumps made i. The position yt =

∑t
i=1 0yi is a sum of displace-

ments 0yi, which are random variables

0yi =















+1( if xi ≤ 1/3

0( if 1/3 < xi ≤ 2/3

−1( otherwise

(28)

In this manner, we construct the paths y&1'
i and y&2'

i from the sequences $xi%
&1' and $xi%

&2',
respectively. Using the initial condition y&1'

0 = y&2'
0 = 0, the height between the two random
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walkers is defined as ht = y&1'
t − y&2'

t . For a random process, the corresponding correla-
tion function Ht ≡ &)ht − h0)' ∼ t; decays asymptotically as a power law with an exponent
; = 1/2 [189].

The intersection test deals with two random walkers on a square lattice. The random
walkers start from the origin at the same time and are allowed to jump independently on a
lattice. Meanwhile, we consider the probability It that the two random walkers after t jumps
have no intersection other than their common starting point. Note that the two random
walks need not meet at the same site at the same time, but any common point in their paths
is regarded as an intersection. For a random process, It behaves asymptotically like a power
law It ∼ t−1 with an exponent 1 = 5/8 [190, 191].

In the SN test, we consider N random walkers in one dimension and let them move
simultaneously without any interaction such that, at any jump attempt, they can make a
jump to the left or to the right with equal probability. After t . 1 jumps by all random
walkers, the mean number of sites visited SN (t has an asymptotic form SN (t ∼ f &N 't, , where
the scaling function f &N ' = &lnN '1/2 and , = 1/2 [192]. The value of , observed serves as
a measure of correlations.

Values of the parameters used in the tests discussed below are given in Table 2. There :
is the number of jumps in a single random walk, and M is the number of independent runs
in the test.

4.2.3. Results for Some Pseudorandom Number Generators
Here we discuss results of the three tests for a few carefully chosen pseudorandom number
generators. The present results complement previous investigations discussed in more detail
in Ref. [185].

The generators discussed in this work represent a variety of different generators often
used within the physics community. R250 is an implementation of the generalized feedback
shift-register (GFSR) algorithm [193] xn = xn−250 ⊕ xn−103, where ⊕ is the bitwise exclusive
OR operator. R89 is another example of GFSR generators and uses xn = xn−89 ⊕ xn−38.
RAN is a “minimal” linear congruential generator of Park and Miller (with multiplier 16807
and modulus 231–1) combined with a Marsaglia shift sequence, and it has been proposed
in a recent edition of Numerical Recipes [194]. RAN2 is based on the 32-bit combination
generator first proposed by L’Ecuyer [195] and later published in Numerical Recipes [196],
using shuffling. RANMAR [197, 198] combines a lagged Fibonacci generator with a simple
arithmetic sequence and has been suggested as a good candidate when one aims towards
a “universal generator” [198]. In addition, we test the Mersenne Twister [199], which has
a huge period and good theoretical properties in view of recent studies by Matsumoto and
Nishimura [199]. Finally, we consider the most “luxurious” version of RANLUX [200, 201],
which is based on ideas of deterministic chaos. In RANLUX4, one generates 389 random
numbers, delivers 24 of them, and throws the remaining 365 numbers away.

To determine the exponents ;, 1, and ,, we considered their “running exponents”
defined as

;t ≡
log&Ht+0t/Ht'

log*&t + 0t'/t-
(29)

where the present example is for the height correlation test. Running exponents of 1 and
, were determined in a similar fashion. The “time window” 0t used in this work varied
between 50 and 1000.

Demonstrative results for the running exponents are shown in Fig. 10. The initial behavior
of some generators is clearly different and is discussed below in more detail. Nevertheless,

Table 2. Values of the parameters : and M used in the tests. The SN test was carried
out with N = 2.

Height Correlation Test Intersection Test SN Test

: 2000 4000 2000
M 107 108 108
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Figure 10. Demonstrative results of the running exponents (left) ;t , (middle) 1t , and (right) ,t in the three tests.
The exponents shown in Table 3 have been extracted from the large-t limit. For clarity’s sake, results of only a few
generators are shown here.

asymptotically, we find the running exponents of all generators to converge to some limiting
value at large t. This regime was therefore used to determine the exponents.

The results for the exponents ;, 1, and , are given in Table 3. Results of the GFSR
generators R89 and R250 are not surprising, as they have recently failed in various random
walk tests (see references in [185]). RANLUX4 and RANMAR, on the other hand, perform
considerably better, in agreement with some previous studies [185, 198, 202–205]. Equally
good performance is found for the Mersenne Twister and RAN2, whereas the results of
RAN in the intersection test are not fully convincing. Then, the exponent 1 deviates from
the theoretical limit, and this deviation seems to be systematic, as is demonstrated by Fig. 10
(middle). When the intersection test was repeated for RAN, we found 1 = 026239&4', which
again fails the test.

The tests presented above focus on the asymptotic behavior of the corresponding corre-
lation functions. This is because only the asymptotic behavior of the correlation functions is
known theoretically. Yet correlations in pseudorandom number sequences are playing a role
also at shorter scales, as is very evident from the running exponents in Fig. 10. For cases
in which such short-range correlations are of interest, one can use a two-way analysis in
which various pseudorandom number generators are judged against a reference generator.
This approach was used in Ref. [185], which revealed further correlations in a few random
number generators, including RANMAR.

At this stage, we conclude that even highly recommended and commonly used pseudoran-
dom number generators may fail in tests that focus on their weak points. In general, one can
safely say that there are no good pseudorandom number generators. All of them are bad.
It is simply a question of finding those that are better and more reliable than the others.
We will discuss this broad issue in more depth in Section 4.3.3. Meanwhile, to get further

Table 3. Results for the exponents of the three tests. The notation 0.4989(2) means 024989 ± 020002.

Height Correlation Test Intersection Test SN Test
RNG ; 1 ,

R250 0.4989(2) 0.6265(5) 0.4984(1)
R89 0.4984(2) 0.6205(5) 0.4981(1)
RANLUX4 0.5001(1) 0.6257(5) 0.5000(1)
RANMAR 0.5000(1) 0.6250(4) 0.5001(1)
Twister 0.4999(1) 0.6242(5) 0.5000(1)
RAN 0.4999(1) 0.6224(4) 0.5000(1)
RAN2 0.5001(1) 0.6241(5) 0.5000(1)

Exact 1/2 5/8 ≈ 02625 1/2

Note: The exponents were extracted from the asymptotic tail of the corresponding correlation functions, and the
exponents that deviate from the exact value by more than two error bars have been underlined.
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insight into the use and effect of random numbers in stochastic simulations, we consider
their influence on DPD simulations.

4.3. Role of Random Numbers in Dissipative Particle
Dynamics Simulations

Above we have stressed the importance of developing techniques for multiscale modeling.
Development of stochastic simulation techniques also plays a crucial role in this respect. This
is simply because many important processes in soft matter systems take place at mesoscopic
length and timescales (roughly 1–1000 nm and 1–1000 ns) that are beyond the limits of
atomic-scale molecular dynamics. To overcome this problem, stochastic simulation methods
such as DPD, discussed in Section 3.2, are hence needed.

The role of random numbers in DPD is crucial. This is because particles in DPD model
systems are partly driven by stochastic noise, which is generated by pseudorandom numbers.
Any correlations in pseudorandom number sequences can therefore lead to serious problems
if they interfere with the true dynamics of the system.

To study how sensitive DPD actually is to such underlying correlations in pseudorandom
number sequences, we consider a simple model fluid system described by N particles with
masses mi, coordinates "ri, and velocities "vi. Interparticle interactions are characterized by
the pairwise conservative, dissipative, and random forces exerted on particle i by particle j ,
respectively, and are given by

"F C
ij = 1+&rij'"eij
"F D
ij = −,+2&rij'&"vij · "eij'"eij
"F R
ij = /+&rij'5ij "eij

(30)

where "rij = "ri− "rj , rij = )"rij ), "eij = "rij/rij , and "vij = "vi− "vj . The weight function for the different
interaction terms has here been chosen to follow the same form. Random numbers appear
in these equations by describing 5ij , which are symmetric random variables with zero mean
and unit variance. The 5ij are expected to be uncorrelated for different pairs of particles and
different times, and it is indeed random numbers whose task it is to satisfy this condition.

Remaining details are fixed by adopting a commonly made choice for the weight function

+&rij' =
{

1 − rij/rc for rij < rc

0 for rij > rc
(31)

with a cutoff distance rc [17] and +R&rij' = +&rij'. Then the equations of motion are given
by the set of stochastic differential equations

d"vi =
1
mi

(

"F C
i dt + "F D

i dt + "F R
i

√
dt
)

(32)

where "F R
i = ∑

j 1=i
"F R
ij is the total random force acting on particle i (with "F C

i and "F D
i defined

correspondingly).

4.3.1. Model System
To maximize the role of random numbers, we study a simple model fluid system of identical
particles (mi = m ∀i) in the absence of conservative forces (1 = 0). This choice corresponds
to an ideal gas, which provides us with some exact theoretical results to be compared with
those of model simulations. The dynamics of the system then arise only from random noise
and from a dissipative coupling between pairs of particles. The random force strength is
chosen as / = 10, and the dissipation strength is given by the fluctuation–dissipation relation
/2/, = 2kBT

∗ [18], where the desired thermal energy is chosen as kBT
∗ = 1. The length

scale is defined by rc = 1, and time is given in units of rc
√

m/kBT .
In our simulations we use a three-dimensional box of size 10 × 10 × 10 with periodic

boundary conditions and a particle density < = 4. Equations of motion [Eq. (32)] are solved
in practice using the recently suggested integration scheme known as DPD-VV [125–127],
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and the time step used in this procedure was 3t = 02001. With this choice, the average
temperature during simulations &kBT ' remains at the desired value within 1%. The results
shown below are for simulations of 106 time steps after equilibration, which takes about 200
CPU-hours each on a typical RISC workstation.

Because the results depend on how the random number sequences are used, we discuss
this issue in some detail. Consider particles i = 1( 2 2 2 (N . For every pair of particles at
a given moment, we need to generate an independent and symmetric random variable 5ij
with zero mean and unit variance, which here is done using uniformly distributed random
numbers with unit variance [11]. Then using the particle “1” as an example, one finds all
other particles “j” that interact with the particle “1” (i.e., particles for which r1j ≤ rc).
Suppose that the number of such particles $j1( j2( 2 2 2 ( jK% is K. Then one generates a random
number sequence $xi% = x1( 2 2 2 ( xK such that x1 determines 51j1 , x2 determines 51j2 , and so
forth. The same procedure is then performed for all particles interacting with the particles
“2” through “N − 1,” such that each pair of particles is considered exactly once.

The results below have not been published elsewhere, which possibly explains our interest
in specifying this model in great detail.

4.3.2. Results for Some Pseudorandom Number Generators
In this discussion, we consider a small sample of the generators described in Section 4.2.3.
We focus on the radial distribution function g&r' [206] that is one of the most central
observables in studies of liquids and solid systems. For the ideal gas considered here, g&r'≡ 1
for all r , and therefore any deviation from one has to be interpreted as an artifact caused
by the employed simulation scheme. This approach provides a simple and effective measure
of correlation effects and serves our main interest of seeing how sensitive DPD is to the
underlying correlations in pseudorandom number sequences.

Results shown in Fig. 11 (left) indicate that differences between the generators are small.
For all generators tested, the radial distribution function is almost flat and has only minor
deviations from the expected behavior. Did we expect something else that would have allowed
us to conclude that some pseudorandom number generators lead to results that are simply
nonsense? Maybe. At anyrate, we are definitely glad that we did not find major artifacts.

Aside from noise effects, the minor deviations found in Fig. 11 (left) may result from
three different sources. First, the expected behavior of g&r' = 1 is rigorously true only in
the limit 3t → 0, whereas in practice the time step is always finite. Second, how Eq. (32)
is integrated also affects physical quantities such as g&r'. Third, the deviations may result
from correlations in random number sequences.
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Figure 11. Left: Demonstrative results of the radial distribution function g&r' for a few random number generators
tested. Note that error bars are largest for small r , as the data was collected with a fixed bin size dr = rc/100.
Right: The decay of the velocity correlation function C&t' for a few generators from top to bottom: RAN, R89,
RAN2, and the Mersenne Twister. Results of R89, RAN2, and the Mersenne Twister have been shifted to clarify
the presentation.
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In this case, the time step 3t and the integration procedure are fixed, and therefore their
effect is similar for all generators. Thus, the best we can do is to compare the four curves
in Fig. 11 (right) with one another. This comparison leads to a simple conclusion that all
generators yield approximately similar results within error bars. Only R89 deviates from
other generators at small r , and even in this case the fluctuations are rather weak.

To complement this test, we also calculated the isothermal compressibility =T defined as
=T <kBT = 1 + 4"<

∫$
0 drr2*g&r' − 1-, which is an example of a thermodynamic response

function. Results of all generators were found to be very similar. Finally, we used the single-
particle velocity correlation function C&t' = &"vi&t' · "vi&0'' [206] to gauge possible problems
with time-dependent quantities such as diffusion. These studies revealed that the results of
all generators for C&t' were essentially identical [see Fig. 11 (right)].

These results indicate that DPD model simulations are relatively insensitive to the under-
lying correlations in pseudorandom number sequences. This idea is supported by further
calculations using rather poor generators (such as the GFSR generator xn = xn−31 ⊕ xn−3),
whose results were comparable to those discussed above. However, we cannot conclude
that this finding is generic, as the test results depend on how random numbers are used
within a simulation. In this case, we feel that the fluid-like nature of the system plays certain
role. Namely, as was described in Section 4.3.1, the motion of the particle i is influenced
by random forces acting between i and other neighboring particles nearby. Because the
number of neighboring particles K is usually small and not conserved, the motion of the
particle i is dictated by a short random number sequence $xi% = x1( 2 2 2 ( xK , whose size K
fluctuates in time. Furthermore, the random number sequences $xi%

&1' = x1( 2 2 2 ( xK1
and

$xi%
&2' = x1+L( 2 2 2 ( xK2+L used at consecutive moments for the same particle are separated

by a sequence of size L ∼ "&N &K''. Thus, to conclude, it seems plausible that only strong,
short-range correlations within $xi% influence the dynamics of simple fluid systems that have
been considered in this work.

We found above that the quality of pseudorandom numbers is likely not crucial in DPD
model simulations of simple fluid systems. This favorable idea should be taken with a grain
of salt, however. A number of simulation studies have shown [185, 207, 208] that the under-
lying correlations in pseudorandom number sequences may interfere with the true dynamics
of model systems. Therefore it is possible that the same problems are lurking behind the
shadows and could be faced in DPD simulations, too. An example of such a situation is
DPD simulations in a parallel environment, where pseudorandom number sequences can
be used in various different ways (such as the leap-frog and blocking techniques, to name
just two examples). This warrants particular care to be taken when pseudorandom number
generators are being used in future large-scale applications. Although such tests have not
been carried out yet (to our knowledge), they would be highly welcome to clarify this issue.

4.3.3. Discussion on the Future Aspects of
Using Pseudorandom Numbers

The Buffon experiment [209] is probably one of the first and best known examples of the
MC method. In this experiment, one throws needles of equal length at random over a plane
marked with parallel and equidistant lines. By counting the number of intersections between
lines and needles, one can estimate the value of ". Provided that the needles were thrown
by a pseudorandom number generator, how precise and “universal” values for " would you
expect?

If your answer is positive and in favor of using pseudorandom number generators without
any concern, perhaps a few practical examples might change your mind. In the late 1980s, it
was found [210] that the critical exponents in the three-dimensional Ising model depended
on the random number generator used in the MC simulations. Later in the 1990s, Ferrenberg
et al. [207] draw the same conclusion in the two-dimensional Ising model when cluster
algorithms were employed for the dynamics of the system. Similar findings in other contexts
are numerous and include, for example, studies of surface growth, deposition problems, and
random walks [202, 208, 211].

The above examples demonstrate that in stochastic simulation techniques, there is an
extra degree of freedom that should always be mentioned when the results are reported
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in the literature: the pseudorandom number generator. This may sound sarcastic, but the
fact is that the results of stochastic simulations are a function of the pseudorandom number
generator used.

As a consequence, numerous test methods have been developed with an aim to finding
(undesired) correlation effects from the pseudorandom number sequences. The standard
tests that focus on general properties of random number sequences form the most significant
test bench in this field [47]. They are complemented by more specific tests, often known as
application-specific tests [202, 203] that are designed to mimic some particular application.
For research topics such as surface growth or surface diffusion, using lattice-gas models,
the Ising model is one of the most convenient starting points when one aims to develop an
application-specific test for these purposes. In addition to these, theoretical tests such as the
spectral test and discrepancy complement our knowledge of the properties of pseudorandom
number algorithms. In all, there is a huge body of tests available. The key issue is to use
them and, further, to develop new test methods for ever increasing requirements. When
done carefully, one can avoid undesired artifacts resulting from the pseudorandom number
generator used.

We have demonstrated above how correlations in some commonly used pseudorandom
number generators may change the behavior of physical quantities such as time-dependent
correlation functions. However, we have also found that some recently suggested genera-
tors such as the Mersenne Twister and RANLUX4 passed all the present tests. A pessimist
could now say that all pseudorandom number generators have inherent weaknesses, and
that eventually they fail anyway. Optimistically speaking, however, one can conclude that
there are still many generators whose properties are reasonably good even for very challeng-
ing applications. To make sure that the situation will remain equally positive in the future
as the computational power is increased, further work is definitely called for to develop
more reliable pseudorandom number generators. When combined with novel test methods
to challenge them, we are on the right track.

4.4. How to Integrate Equations of Motion in DPD Simulations

In the above discussion, we have noted that there is an increasing demand for useful and effi-
cient methods to deal with complex soft matter systems in the mesoscopic regime. DPD [11,
17–19] (see Section 3.2) is a particularly appealing technique in this regard. This is mainly
because the “particles” of DPD correspond to coarse-grained entities, which allows the use
of large time steps (compared to typical molecular dynamics simulations) as pair potentials
for the coarse-grained description are considerably softer than for the underlying atomic
description. Further, the pair potentials in DPD can be chosen such that the hydrodynamic
modes are accounted for in a proper fashion.

In practice, to obtain full hydrodynamics, the choice of interactions is done through a
pairwise coupling of particles through random and dissipative forces. As we will note below,
this makes the integration of the equations of motion a nontrivial task. The main difficulty
here arises from the dissipative force, which depends explicitly on the relative velocities of
the particles, whereas the velocities in turn depend on the dissipative forces. An accurate
description of the dynamics therefore requires a self-consistent solution, which in turn is
computationally demanding.

Here we discuss how this problem can be overcome. In addition to the self-consistent
approach, we discuss other complementary methods that account for the velocity dependence
of dissipative forces in some approximate manner, allowing the integration to be carried out
to a sufficient degree of computational efficiency.

4.4.1. Equations of Motion in DPD
The time evolution of particles in DPD can be described by the Newton’s equations of
motion

d"ri = "vi dt

d"vi =
1
mi

& "F C
i dt + "F D

i dt + "F R
i

√
dt'

(33)
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Here "F C
i = ∑

i 1=j
"F C
ij is the total conservative force acting on particle i, and "F D

i and "F R
i are

defined correspondingly for the dissipative and random forces, respectively.
The reason why we come back to this issue is the fact that Eq. (33) is at the heart of

the problem as regards DPD. It shows that the velocities of the particles depend on the
dissipative forces acting on them. At the same time, the dissipative forces in turn depend
on the relative velocities of the DPD particles [see Eq. (30)]. The velocities and dissipative
forces of all the particles are therefore intertwined. This is precisely the reason why the
self-consistent solution is needed in the first place.

Equation (33) furthermore shows that the similarity of this case to classical MD simu-
lations is close. Nevertheless, there is reason to point out that the random force term in
Eq. (33) is coupled to the factor

√
dt instead of dt. This can be justified by a Wiener process,

as in stochastic differential equations. Here, it suffices to notice that physically the Wiener
process models intrinsic (thermal) noise in the system and provides the simplest approach
to modeling Brownian motion using stochastic processes (see Refs. [11, 18]).

4.4.2. Model Using DPD
Although the above continuous-time version of DPD satisfies detailed balance and describes
the canonical NVT ensemble, in practice the time increments in Eq. (33) are finite and
the equations of motion must be solved by some integration procedure. To study possible
artifacts caused by the choice of the integration scheme, we consider a gaslike system of
N identical particles. The model discussed here is essentially similar to that presented in
Section 4.3.1.

In essence, we consider an ideal gas (“ideal DPD fluid”) in three dimensions, where the
random force strength is chosen to be / = 3 in units of kBT

∗ and the particle number density
is < = 4. The weight function +R&rij' = +&rij', as well as other practical details have been
chosen as in Section 4.3.1. Finally, the random numbers were generated by the Mersenne
Twister.

The reason for using this model is that the ideal DPD fluid model provides us with some
exact theoretical results that can be compared to results from model simulations. Hence,
the dynamics of the present system arise only from thermal noise and dissipative coupling
between pairs of particles.

4.4.3. Integration Schemes
The integration schemes discussed below have been suggested very recently. They com-
plement each other in the sense that the velocity dependence of the dissipative forces is
accounted for in all cases, but the approaches differ substantially from each other.

The standard velocity–Verlet (VV) [212] is typically the integrator in classical MD simula-
tions. It is time-reversible and symplectic and works well especially at large time steps [61].
Here we use VV as a starting point for integrators designed specifically for DPD simulations.

The modified VV algorithm (DPD-VV) differs from the standard VV in the sense that
it accounts for the velocity dependence of dissipative forces in an approximate fashion by
updating the dissipative forces for a second time at the end of each integration step. When
this idea is extended further, we obtain a self-consistent variant of DPD-VV. This SC-VV
algorithm [125–127] determines the velocities and dissipative forces self-consistently through
functional iteration, and the convergence of the iteration process is monitored by the instan-
taneous temperature kBT . This approach is similar in spirit to the self-consistent leap-frog
scheme introduced recently by Pagonabarraga et al. [213]. Other schemes considered here
include the approach by den Otter and Clarke (OC) [214], in which the parameters of a
leap-frog algorithm are adjusted such that the effects resulting from the velocity dependence
of dissipative forces are reduced as much as possible, and the approach (S1) by Shardlow
[215], in which the integration process is factorized such that the conservative forces are
calculated separately from the dissipative and random terms.

In addition to the above integrators, we also discuss the performance of Lowe’s integration
scheme [133] based on combining the Andersen thermostat [134] with the VV scheme in
a momentum conserving DPD-like fluid. This approach differs from the “traditional” DPD
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in the sense that now the dissipative and random forces are not explicit. Rather, they are
described by the Andersen thermostat that thermalizes the system for pairs of particles. In
practice, one first integrates Newton’s equations of motion with a time step 3t, and then for
all pairs of interacting particles one decides with a probability 73t (0 < 73t ≤ 1) whether
to take a new relative velocity from a Maxwell distribution. The dynamical properties of the
system can be tuned by the parameter 7 [133], which is inversely proportional to the decay
time for relative velocities.

A full description of the integrators is given in Ref. [126].

4.4.4. Demonstrative Results
As discussed above, this model is characterized by the absence of conservative forces, and
thus any artifacts arising from the velocity-dependent forces are expected to be pronounced
in this model. To study this possibility, we first discuss the deviations of the observed kinetic
temperature

&kBT ' =
m

3N − 3

〈 N
∑

i=1

"v2
i

〉

(34)

from the desired temperature kBT
∗. As the simulations are employed in the canonical ensem-

ble, the temperature conservation is one of the main conditions for a reliable performance
of the model. The results for &kBT ' shown in Fig. 12 show that DPD-VV and SC-VV are
reasonably good at small time steps, whereas larger time increments lead to major devia-
tions from the desired temperature. For OC, &kBT ' decreases monotonically with 3t for
3t ≤ 0215. For larger time steps, we find the temperature to increase rapidly. Overall, we
can conclude that the deviation in the case of OC is greater than for DPD-VV but consid-
erably smaller than in the case of SC-VV. The Shardlow S1 integrator, in turn, has excellent
temperature control, and the deviations remain less than 0.5% up to 3t = 022. The best
temperature control is found for the method by Lowe, however, yielding &kBT ' = kBT

∗ for
all time steps 3t. Although Lowe’s approach depends on the dynamic variable 7 , the conclu-
sions with regard to temperature conservation have not been found to depend on the value
chosen for this parameter [126].

Next, we examine the radial distribution function g&r' [216], which is one of the most
central observables in studies of structural properties of liquids and solids. For the ideal
gas, the radial distribution function provides an excellent test for the integrators, as then
g&r' ≡ 1 at the continuum limit. Therefore, any deviation from unity has to be interpreted
as an artifact resulting from the integration scheme employed.

Results for g&r' are shown in Fig. 13. We find that the deviations from the ideal gas limit
g&r' = 1 are pronounced for OC, indicating that even for small time steps, this integration
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Figure 12. Results for the deviations of the observed temperature &kBT ' from the desired temperature kBT
∗ ≡ 1

versus the size of the time step 3t [126]. The error in &kBT ' is of the order of 10−4. Adapted from Ref. [126].
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Figure 13. Radial distribution functions g&r' with several values of time step 3t in model A: (a) 3t = 0201, (b) 3t =
0205, and (c) 3t = 021 [126]. The error in g&r' is greatest at r = 0201, where it takes the value of 0.01. Adapted
from Ref. [126].

scheme gives rise to unphysical correlations. The performance of DPD-VV is considerably
better, although artificial structures are yet rather pronounced, whereas SC-VV and S1 lead
to a radial distribution function that is close to the theoretically predicted one. Completely
structureless g&r' is found only for the integrator by Lowe, however. Again, in this case, we
have tested the behavior of g&r' with various values of 7 , but the results remain the same.
This confirms the expectation that 7 does not influence the equilibrium properties of the
system.

The radial distribution function reflects equilibrium (time-independent) properties of the
system. To complement the comparison of different integrators, we next consider the tracer
diffusion coefficient

DT = lim
t→$

1
6 t

&*"ri&t'− "ri&0'-2' (35)

which can provide us with information of possible problems on the dynamics of the system.
Here "ri&t' is the position of a tagged particle, and the mean-square displacement is then
averaged over all particles in a system to get better statistics for DT .

The results for the diffusion coefficient DT in Fig. 14 are essentially consistent with the
conclusions above. The integrator OC is not very useful in a system of this kind, since it
seems to lead to substantial deviations from the expected behavior. The SC-VV and the
integrator by Lowe perform much better, and the integrators S1 and DPD-VV are most
stable in this case.

4.4.5. Discussion on Methodology of DPD
Above, we discussed the performance of various novel integration schemes that have been
designed specifically for DPD simulations. On the basis of the ideal gas results, we can
conclude that there are two approaches whose performance is above the others. Of these,
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Figure 14. Results for the tracer diffusion coefficient DT &3t'/DT &0201' versus the time step 3t [126]. The error in
DT &3t'/DT &0201' is on the order of 0.001. Adapted from Ref. [126].
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Shardlow’s integration scheme is based on splitting the equations of motion and can be
applied to the usual DPD picture, whereas the approach by Lowe is distinctly different in
nature and is related to the classical work by Andersen. Results for other, more strongly
interacting models support this conclusion [126]. It is also noteworthy that both of these
schemes are fast and easy to implement. Furthermore, and what is important when Lowe’s
method is compared to Shardlow’s integration scheme, it provides an alternative and a very
attractive description of dissipative particle dynamics. It is actually rather surprising that
Lowe’s approach has not attracted considerable attention yet. Perhaps the situation will
improve shortly.

In addition to this issue, the methodology and the theoretical background of DPD have
taken many significant steps very recently. From a simulation point of view, DPD has been
shown to be a promising technique for studies of soft matter systems under non-equilibrium
(flow) conditions [128]. On the theoretical side, a few extensions have been suggested
recently [217, 218]. The Smoothed Particle Hydrodynamics framework suggested by Pep
Español and his collaborators is particularly interesting as it lacks a number of limitations
imposed by the traditional DPD picture [218]. We also would like to mention the recent
work by Chris Lowe [133], whose alternative description for DPD is an attractive idea since
it allows one to tune solvent properties in a reasonable and efficient way. Finally, as coarse
graining is one of the grand challenges in the field of multiscale research, we would like
to mention the recent work by Lyubartsev et al. [219]. Therein, the authors presented an
approach to coarse-grain a MD description by the IMC technique such that the effective
interactions found through this procedure can be applied to DPD simulations to study the
large-scale properties of aqueous electrolyte solutions. This case will be discussed in more
detail in Section 6.

We conclude that the development of methodology is an integral part of computational
research. This is particularly true in soft matter research that deals with various fundamental
questions, having a major effect on our understanding of biological systems. In particular, we
hope that the case studies discussed above have highlighted some of the problems that may
be hiding under the simulation protocols. Great care is therefore warranted to avoid artifacts
resulting from the methods used, and more attention is called for to develop more accurate
and efficient techniques to deal with complex, biologically relevant soft matter systems.

5. NANOSCIENCE OF BIOPHYSICAL SYSTEMS THROUGH
ATOMIC-SCALE MOLECULAR DYNAMICS

At present, the length scales accessible to atomic-level molecular dynamics simulations are
on the order of 5–50 nm. This may sound modest, but in practice it allows one to gain plenty
of insight into the understanding of various biologically relevant molecules and molecular
systems under hydrodynamic conditions. The above length scale further stresses the fact
that MD is currently the method of choice for processes and phenomena that take place in
the nanoscopic regime. In this section we therefore discuss a few examples that hopefully
highlight the capability of molecular simulations, and MD in particular, in revealing the
microscopic mechanisms and physical laws that govern biophysical systems on the atomic
level. Because the field is enormous, we are bound to focus on one topic. We hence con-
centrate on the properties of lipid bilayers that are commonly adapted as basic models of
cell membranes. In addition to these properties, we also, though very briefly, discuss recent
computational modeling of other biomolecules related to membrane systems.

5.1. Lipid Membranes in a Nutshell

All cells are surrounded by cell membranes that are like thin elastic sheets. The thinness
of the membranes is genuinely interesting, as whereas the diameter of a cell is typically
20–30 !m, the thickness of a cell membrane is just a fraction of this, being typically about
5 nm. Yet membranes are involved in essentially all processes related to the flow of nutrients
and ions into and out of the cell. Membranes further provide an environment in which a
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variety of biochemical processes occur, and in general the role of membranes in cells is
crucial, as they function to organize biological processes by compartmentalizing them.

The main structural components of native biological membranes [220–222] are lipids
(Greek: lipos, fat). As shown in Fig. 7, they have a polar headgroup and a nonpolar hyrdo-
carbon tail. Because the polar “water-loving” headgroups are able to form hydrogen bonds,
they favor contact with water, whereas the “water-hating” nonpolar tails try to avoid water
as much as possible. This “schizophrenic” nature of lipid molecules is the underlying reason
why they self-assemble as bilayer-like structures, where two lipid monolayers face each other
(see Fig. 7).

Although this idea of describing lipid membranes simply as lipid bilayers is very con-
venient, it is yet somewhat misleading because biological membranes are not like single-
component lipid bilayers but, rather, are mixtures of various types of lipids that differ in a
number of ways [222]. Some differences may seem minor, such as the length of hydrocarbon
tails or the position of a double bond in the tails of monounsaturated lipids. Yet there are
differences that make some lipids distinctly different from each other, such as the chemical
composition and the net charge of the polar headgroup. In all, there are hundreds (or even
thousands) of different lipid species that are found in biological membranes. In addition to
this, to make molecular modeling more challenging, one should account for the fact that
lipid membranes include numerous kinds of proteins either embedded in (integral proteins,
ion channels) or attached peripherally to the membrane. The proteins are also related to a
dynamic rubberlike network known as the cytoskeleton [222], which is attached to the inner
surface of the membrane, whereas the outer leaflet of the membrane is covered by a network
that in this case is made of glycocalyx carbohydrates. All together, for a physicist modeling
soft matter systems, biological membranes are a mess.

Life would be much easier if biological membranes could be described by simple theoret-
ical tools such as models related to the Ising model. Perhaps surprisingly, this approach has
indeed been applied to cell membranes, and the outcome has been very successful [223–228].
Sarcastically speaking, it has been said that life can be described by the Ising model, too: Of
the two states available in the traditional Ising model, one is then “alive” and the other is
“dead.” However, even though the Ising model and related approaches can be very useful in
some cases, it is clear that it is a very coarse-grained description for complex systems such
as lipid membranes. We cannot expect that approaches of that kind can provide any insight
into the understanding of membrane systems over microscopic scales. In this nanoscopic
regime, where atomic and molecular degrees of freedom cannot be neglected, more detailed
approaches are needed to resolve the microscopic mechanisms that dictate the properties of
given systems.

5.2. Molecular Dynamics of One- and Two-Component
Lipid Membranes

Molecular dynamics provides a unique means to consider lipid membranes as well as other
biologically relevant soft matter systems from an atomic perspective (see recent review
articles in Refs. [84–88]). In particular, it allows one to gain insight into the nature of
atomic-scale phenomena and related issues with a level of detail missing in any experimental
technique. Nevertheless, MD also allows one to analyze membrane properties that are of
experimental interest, thus providing a connection to macroscopic properties of the system.

As MD simulations of native biological membranes are not feasible, a natural starting
point is to consider simpler models that include only the most essential features of cell
membranes. This line of thought has lead to numerous studies of single-component lipid
bilayers. Even though this approach may sound too simplified, it can yield a substantial
amount of knowledge of model membrane systems, and as a matter of fact, the same idea
has been employed in experiments.

First, MD simulations of single-component lipid bilayers were carried out in the 1980s and
early 1990s [229, 230]. The timescales and system sizes were obviously very limited, but the
early studies were already able to demonstrate the usefulness of MD simulations in this field.
This is particularly true as regards the structure of lipid bilayers, which was then the key
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aspect because of the relatively short timescales accessible through MD simulations (on the
order of 1 ns at that time). More recently, and in particular during the last few years, better
computer resources have made it possible to examine some of the dynamical aspects, too.

Another direction of research that has attracted plenty of activity is the study of two-
component lipid bilayers. This is simply a result of the fact that there is a rather limited
number of lipid species that are abundant in cell membranes. As an example, in human ery-
throcytes the most abundant lipid species are [220] cholesterol (25%), phosphatidylcholine
(PC) (19%), phosphatidylethanolamine (PE) (18%), sphingomyelin (SM) (17.5%), and phos-
phatidylserine (PS) (8.5%). In human myelin membranes the abundant lipid species are [222]
cholesterol (27%), ganglioside (26%), PC (10%), PE (20%), SM (8.5%), and PS (8.5%).
Whereas PC, PE, and SM molecules are neutral but zwitterionic, PS is charged (anionic). For
the discussion below, it is remarkable to note that cholesterol, PCs, and SMs together make
up about 62% of the composition of human erythrocytes, and about 45% of human myelin
membranes. Other highly concentrated molecules playing a major role in cell membranes
are, for example, glycolipids, sugar-containing lipid molecules whose polar headgroups are
attached to oligosaccharides. Thus, they play a prominent role in cell–cell interactions.

The most relevant case for all eucaryotic plasma membranes that do contain large amounts
of cholesterol is a mixture of PC and cholesterol molecules. The role of cholesterol is partic-
ularly important, as cholesterol is considered as one of the main regulators of the fluid-like
nature of membranes that is the key to their various dynamic properties. The importance
of cholesterol is further emphasized by the recent view by Simons and Ikonen [231], who
proposed the so-called raft model for biological membranes. The raft model is in part based
on the (rather old) idea of lateral organization of heterogeneities in cellular membranes,
and second, for an assumption that sphingolipids and cholesterol segregate in membranes
to form microdomains termed rafts. Cholesterol seems to be crucial in the formation of
rafts, which have been reported to be rich in sphingolipids, cholesterol, and saturated lipids.
Recent works have proposed rafts to be enriched in some integral proteins as well as in
GPI-anchored (glycosylphosphatidylinositol-anchored) proteins in the outer monolayer of a
plasma membrane. As a consequence, rafts have been thought to act as platforms for adhe-
sion and signaling, as they confine proteins involved in a signal transduction event into the
same microdomain. Anyhow, despite many studies, unambiguous evidence for the existence
of rafts is currently lacking. For a more thorough account of this topic the reader is referred
to reviews in Refs. [232–235]. Nevertheless, without doubt, the role of cholesterol in lipid
membranes is clear: There is a variety of reasons to consider cholesterol as one of the most
important (lipid) molecules in cells.

Having said this, let us consider a PC/cholesterol bilayer system as an example to demon-
strate how MD can be used to probe complex biologically relevant systems. As the space is
limited, we focus on a few structural quantities that are closely related to experiments.

Figure 15 shows a snapshot of a DPPC/cholesterol bilayer after a 100-ns MD simulation
[236]. To better understand the structure of the bilayer, mass density profiles along the
normal direction of the membrane are shown in Fig. 16 [237]. Experimentally, information
of the same kind can be obtained by, for example, x-ray diffraction measurements that yield
electron density profiles of given bilayer systems [157].

The center of the bilayer is at z= 0; thus we find that the thickness of the membrane in this
case is about 5 nm. Water penetrates rather deeply into the polar headgroup region of the
bilayer, where the phosphate and choline groups of DPPC molecules (as well as the hydroxyl
groups of cholesterol molecules) reside, whereas water does not favor the hydrophobic region
characterized by the DPPC tails and the steroid ring structure of cholesterol. Rather, the
cholesterol molecule prefers to locate itself such that the polar OH-group is in the vicinity
of the water-membrane interface and the steroid structure is in close contact with the acyl
chains of DPPC molecules. The density at the center of the membrane is rather small,
implying that the free volume and free voids are presumably largest at this part of the
system. One might then assume that the intermonolayer friction is very small. We are not
aware of related experiments, however; thus, this idea should be taken as suggestive. What
is definitely clear, however, is that the headgroup-water interface is the most dense part of
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Figure 15. A snapshot of a lipid bilayer of dipalmitoyphosphatidylcholine and cholesterol molecules. The choles-
terol mole fraction is 20%. For clarity, water is not shown.

the system. For one-component PC systems, the pressure across the membrane also seems
to largest at the interface [180].

As the rigid steroid ring system of cholesterol is in close contact with the DPPC tails,
one might expect that this has some influence on the ordering of lipid tails. This is pre-
cisely what happens as is depicted in Fig. 17. There, the order parameter Sn describes the
ordering of the hydrocarbon tails in DPPC molecules following a definition based on the
second order Legendre polynomial. In this case, Sn = 1

2 &3 cos2 )n − 1', where )n is the angle
between the bilayer normal and the orientation of the vector along a C–H bond of the nth
carbon atom of the hydrocarbon chain [86]. The same order parameter is commonly adapted
to studies of liquid crystals. In membrane systems, Sn can be determined through nuclear
magnetic resonance measurements. In this case it suffices to mention that Sn = 025 corre-
sponds to full ordering (where acyl chains are full-trans—like a “zig-zag” conformation),
whereas Sn = 0 corresponds to a disordered chain, in which case the hydrocarbon chain acts
like a random walker. The main finding here is that for this system in the fluid-like state,
above the so-called main phase transition temperature, cholesterol orders the acyl chains of
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DPPC molecules. As recent MD simulations for lipid bilayer mixtures of glycerophospho-
lipids and cholesterol have revealed, the enhancement of acyl chain ordering resulting from
to an increasing cholesterol concentration is related to a number of intriguing phenomena in
membranes [236–246]. For example, as the cholesterol concentration is increased, the area
per molecule in the plane of the bilayer decreases, the permeation of molecules across the
bilayer is affected because of changes in the free energy profile, the likelyhood of gauche
conformations of lipid acyl chains are affected considerably, the lateral diffusion of lipids
and cholesterol molecules is reduced, and the bilayer in general becomes more rigid. These
observations are in good agreement with experimental findings.

As far as other lipid membrane systems are concerned, the key issue is that MD simu-
lations provide a versatile and essentially unique tool to analyze membrane properties in
atomic detail. Basically, all possible issues (excluding electronic degrees of freedom) can be
determined in full detail. In addition, as experimental techniques typically consider macro-
scopic aspects of the system, or the averages taken in experimental measurements are global
ones, MD simulations allow one to gain a much deeper understanding of the system. In
addition to global averages, one can calculate local properties, such as the influence of
cholesterol, on the ordering of phospholipids that are neighbors to the given cholesterol
[244]. One can also follow the trajectories of individual molecules and signaling events in
time, and thus, for example, resolve the diffusion mechanisms and diffusion pathways of
molecules migrating inside lipid bilayers. The work by Söderhäll and Laaksonen of the dif-
fusion of ubiquinone inside a DMPC bilayer provides an excellent recent example of this
issue [247]. Now, as basically every atomic detail is within reach, does this imply that MD is
the method of choice without any limits? It does not. There are two major issues that limit
the use of molecular dynamics for simulations of biomolecular systems. First, the develop-
ment of force fields together with rigorous testing to confirm their validity, and second, the
resources. The first of these is a general issue with which one has to learn to live—it is and
it will be part of our lives in all cases in which new models are being designed and tested.
The second one will get better in time as the development of algorithms and the progress in
computer technology permits computer simulations of more and more challenging problems.

Now, let us come back to the idea of lipid rafts. The second major component in rafts are
sphingolipids, and SM in particular. It is therefore rather surprising that there are just a few
studies that have explored SM systems through MD simulations [248–251]. In essence, one
has found that SM is distinctly different from other lipids such as PCs in the sense that its
hydrogen-bonding capacity is substantial. Unlike PCs, for example, SM molecules are able
to act both as a donor and as an acceptor, thus allowing strong intramolecular as well as
intermolecular hydrogen bonding. This leads to compact SM bilayers in which the area per



Modeling of Biologically Motivated Soft Matter Systems 43

molecule in the plane of the membrane is much smaller than in PC systems, which in turn
is expected to play a key role in various dynamical processes such as lateral and rotational
diffusion as well as permeation of molecules across SM bilayers. Further, the small area per
molecule and the concominant reduction of free volume inside SM bilayers is manifested in
the ordering of SM hydrocarbon tails. As shown in Fig. 17, the order parameter Sn for a pure
SM bilayer is about 50% larger than that for a pure DPPC bilayer, and approximately of the
same magnitude as the order parameter for a DPPC/cholesterol mixture with a cholesterol
content of 20%.

As there are no published computational studies of lipid bilayers with both cholesterol
and SM, essentially all relevant questions with regard to the atomic perspective of lipid
raft systems remain to be posed. We are looking forward to future work that hopefully will
address these issues, together with many other questions related to many-component lipid
membrane systems in general.

5.3. Recent Studies of Lipid Membranes Through
Molecular Dynamics

Developments in the field of MD simulations of model lipid bilayer systems have been
discussed in a number of rather recent review articles [84–88]. In this work, we therefore
focus on the advances made in the last few years.

Most studies in the field of model membranes have concentrated on the “high-temperature
case” characterized by the fluid-like L1 phase above the main phase transition tempera-
ture. Much less attention has been paid to the low-temperature gel phase characterized by
ordering in the plane of the membrane, as well as conformational ordering of the lipid acyl
chains. The studies by Venable et al. [178] and Snyder et al. [252] provide an exception to
the rule. Although certain observations such as tilting of lipid acyl chains and reduced area
per molecule can be made in agreement with experimental data, a detailed and solid analysis
of the low-temperature phase is very difficult to perform because of the dynamics, which are
very slow in this phase.

Rather extensive MD investigations over the years have lead to a good understanding of
bilayers composed of saturated lipids, whereas the understanding of the properties of bilay-
ers composed of unsaturated lipids has been much more limited. Recently, though, there
has been increasing interest in investigating these systems [253–255]. This is simply because
unsaturated lipids, and polyunsaturated lipids in particular, are an essential component of
some cellular membranes. For example, the cell membrane of the nervous system is known
to contain a large fraction of polyunsaturated docosahexaenoic, a fatty acid with six double
bonds. Polyunsaturated lipids are further thought to play a key role in neurological dysfunc-
tions such as Parkinson’s disease and in diseases such as atherosclerosis and cancer. Although
there is a long way to go until the properties of these systems are understood in detail, MD
studies have already demonstrated that bilayers comprising polyunsaturated lipids are dis-
tinctly different from bilayers composed of saturated lipids. Among others, they have shown
that polyunsaturated lipids in bilayers are highly flexible and characterized by a high degree
of conformational disorder. As a consequence, as these findings imply that the influence of
polyunsaturated lipids on the structure within a bilayer is considerable, it has been suggested
that polyunsaturated lipids are particularly relevant for the proper functioning of membrane
proteins [253].

Phospholipid (Langmuir) monolayers are rather commonly used as model systems of lipid
bilayers. This approach is definitely attractive, as the monolayer, being half of a membrane,
is a well-defined planar system that is easier to control than model vesicles and liposomes.
As a consequence, it has been adopted to a wide range of studies, including intermolecular
interactions between various molecules in monolayers, drug delivery issues, and penetration
of peptides into lipid monolayers [256, 257]. The actual correspondence between quantities
measured for bilayers and monolayers is not often clear, however, which may render inter-
pretation of the data. In a recent study, Kaznessis et al. [258] employed MD simulations to
investigate lipid monolayers at the water/air interface and found evidence that some struc-
tural quantities can indeed be different from their counterparts in lipid bilayers. In particular,
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they observed that the order parameter Sn for a DPPC monolayer was essentially constant
(Sn ≈ 022) for carbons 2–14. In DPPC bilayers the behavior of Sn is markedly different (see
Fig. 17). Further studies would be highly welcome to clarify the monolayer versus bilayer
issue in more detail.

Biological membranes at physiological pH are surrounded by an aqueous buffer containing
ions such as Na+, Ca2+, and Cl−. At the same time, about 10% of the lipids in biomembranes
are charged (typically anionic), which implies that their charge has to be compensated by
counterions such as Na+. Recent MD studies [259–261] have thus aimed to clarifing the
effect of salt on lipid bilayers. As Boeckmann et al. demonstrated very clearly [259], this
task is computationally very demanding. This is because relaxation times associated with
the diffusion of ions are very large, which in turn implies that the timescales required for
equilibration and gathering sufficient statistics are substantial (on the order of 100 ns or
more). Nevertheless, recent attempts have shown that salt plays a major role in determining
the structural and electrostatic properties of lipid bilayers and has a major effect on the
lateral diffusion of lipids in a bilayer.

In addition to the above studies for pure lipid bilayers, we would like to mention recent
work on cationic lipid bilayers [151, 262] because of their relevance in gene therapy, drug
delivery, and specifically on DNA–membrane interactions. Some years ago, Bandyopadhyay
et al. performed an MD study of a lipid mixture of neutral (zwitterionic) dimyristoylphos-
phatidylcholine (DMPC) and cationic dimyristoyltrimethylammonium propane (DMTAP) in
the presence of a short DNA fragment [151]. It took several years until this very elegant
piece of work was complemented by a second study focusing on cationic bilayers. Gurtovenko
et al. [262] studied DMPC/DMTAP lipid bilayer mixtures over a wide concentration range
of DMTAP and showed that there is a strong interplay between positively charged TAP
headgroups and the zwitterionic PC heads. This interplay was shown to lead to considerable
reorientation of PC headgroups for an increasing DMTAP concentration, in agreement with
experimental data. It is likely that these observations play a significant role in the conden-
sation of DNA onto the membrane surface.

Biomembranes are semipermeable barriers that control the flow of ions and other molec-
ular species into and out of the cell. As a consequence, the permeation of small molecules
such as water and ions has been studied rather extensively during the last decade. Recently,
more ambitious attempts have been made to study the permeation and distribution of more
complex molecules such as sugars, amphiphilic drugs, and anesthetic molecules in lipid bilay-
ers [263–267]. It is evident that the influence of the compound on the structure of lipid
bilayers depends on the compound in question. Thus, there is currently no point in drawing
any general conclusions. Rather, we would like to emphasize the challenge associated with
the modeling of these processes; the study of the distribution of compounds in membranes
is in general hindered by the limited timescale accessible through MD simulations.

The same problem is encountered in studies of enzyme–membrane and protein–membrane
systems because of large relaxation times associated with the conformational changes of
the molecules. Nevertheless, some successful attempts have been made recently to better
understand the action and function of different kinds of enzymes and protein molecules
in membranes. For example, lipases are enzymes involved in a variety of processes, such
as signal transduction and the hydrolysis of some bonds in phospholipids. MD simulations
have been able to shed light on the influence of these molecules on the structure of lipid
bilayers [268] and on the orientation and conformations of certain enzymes at the water–
membrane interface [269]. As far as integral proteins are concerned, let us here mention
just a few demonstrative examples of recent activities in the field. Sansom et al. [270, 271]
have investigated potassium ion channels that enable rapid movement of K+ ions passively
across a membrane, and Baudry et al. [272] have featured recent progress in the modeling of
light-driven proton pumps in the purple membrane. Perhaps the most topical issue, however,
is the work based on MD studies of water channels [54, 55]. This example is related to the
Nobel Prize in Chemistry 2003 and highlights the remarkable fact of how experiments and
computer simulation studies can indeed complement each other.
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5.4. From Atomistic to Coarse-Grained Molecular
Descriptions of Lipid Membranes

In this chapter, we have in many places faced a fact that biological systems are characterized
by a variety of different length and timescales. For the shortest ones, there are indeed
techniques based on quantum mechanics and atomic-scale MD that describe systems in full
atomic detail. As a consequence, they are obvious techniques for studies of microscopic
properties. However, these approaches are not feasible for cases in which the length scales
are larger than ∼10 nm and the timescales are beyond ∼100–1000 ns.

What we can do under these circumstances is to replace the atomic-level description of the
system with a less detailed one. (See discussion in Section 3.) In practice, one still employs
MD simulations for a system of interacting particles, using precisely the same framework
as in atomic-level MD. The only difference is the molecular description and the choice of
interactions. Although the above discussion has been based on an atomic view, in coarse-
grained MD the molecular description does not account for atomic details. Rather, the
particles describe clusters of atoms rather than individual ones.

One example of this approach is the recent work by Marrink et al. [273]. They used the
Gromacs simulation package (first developed for atomic MD) to study membranes compris-
ing of lipid molecules. The particles in this description did not represent atoms, however.
Rather, they represented clusters of methyl groups or clusters of atoms in the polar head-
group, thus reducing the computational complexity of the model significantly. Goetz et al.
[274, 275], Shelley et al. [276–278], and Kranenburg et al. [120, 121] have recently pursued
ideas of a similar nature. Another approach is to calculate material properties from atomic-
scale MD simulations and to then use them to parameterize mesoscale and macroscale
models. Ayton et al. have recently applied this idea to study elastic properties of membrane
systems beyond the atomic regime, including both mesoscopic [279] and macroscopic levels
[280–283].

Overall, the key word in these simplified descriptions is coarse graining, which takes us
higher in the hierarchy of molecular simulations and allows one to design and study meso-
scopic, and possibly even macroscopic, models for biological membranes and other soft
matter systems.

6. SIMULATIONS OF SOFT MATTER SYSTEMS OVER
MESOSCOPIC SCALES: COARSE-GRAINING OF
IONIC SOLUTIONS

Thus far we have discussed molecular level modeling in detail and has reviewed some of the
recent developments in multiscale modeling in soft matter and biological systems. Further,
we have discussed some practical aspects such as the importance of high-quality random
numbers in numerical simulations and the use of MD simulations for microscopic studies
of biophysical systems. Here, we take one step further and discuss how soft matter systems
can be coarse grained and modeled over scales far larger than those accessible through
atomic-level MD. More specifically, we use one particular coarse-graining method, namely
the IMC method (see Section 3.1) to combine micro- and mesoscale approaches to demon-
strate coarse-graining in practice. We discuss the merits and problems of this method and put
it into a more general context. The method we have chosen is applied to an ionic solution.
Despite its apparent simplicity, this system, consisting of water and NaCl only, is nontrivial
from both a practical and a theoretical point of view.

6.1. Coarse-Graining Strategy

The approach we present here is conceptually simple and systematic, combining classical
molecular dynamics (MD) and a momentum conserving DPD thermostat (i.e., we obtain
the conservative potentials through a coarse-graining procedure from MD simulations and
employ DPD as a thermostat in a manner discussed in Section 3.2. Figure 18 shows an
illustration of the original and coarse-grained systems.
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Figure 18. The coarse-grained and the underlying molecular system. Left: aqueous NaCl with atomic detail. Right:
the coarse-grained model in which waters have been replaced with just one particle.

This method has several advantages, as will be discussed below, and it consists of three
independent parts: first, MD simulations are carried out to obtain radial distribution func-
tions g&r' between different atoms, molecules, or molecular groups; second, the IMC pro-
cedure (see Section 3.1 for details) is applied to invert the radial distribution functions to
obtain effective interaction potentials V eff&r' between the new interaction sites; and finally,
the effective potentials are used within the DPD algorithm (see Section 3.2 for details) to
study the long time- and length scale properties with full hydrodynamics for the new coarse-
grained system.

One of the main advantages of this approach is that it allows easy tuning of the level of
coarse-graining while preserving the essential molecular information. It also provides a well-
defined and systematic coupling between the microscopic and coarse-grained systems in the
sense that the pair correlation properties of the two descriptions are consistent. Although
we have not checked that, this indicates that the coarse-graining procedure proposed here
also preserves the essential information of phase behavior. Furthermore, this method speeds
up simulation times considerably, thus making it possible to examine large-scale properties
of complex molecular systems with full hydrodynamics. Finally, it allows one to study the
limits of coarse-graining (i.e., how coarse-graining depends on physically relevant variables
such as the density, temperature, pressure, and salt concentration).

6.2. Obtaining the Interaction Potentials

Let us first validate the method against the underlying microscopic MD simulations. To
be self-consistent, the coarse-grained potentials should produce the same pair correlation
functions. It is important to note that coarse-graining of even simple liquids is not a simple
feat, especially if one wants to reproduce both static and dynamic properties. This is where
the approach and results presented here are particularly valuable.

For the underlying microscopic MD simulations, we used the flexible SPC water
model [284] and the so-called Smith–Dang parameters for Na+ and Cl− ions [285]; that is,
the Lennard–Jones parameters for the sodium ions were / = 2235 Å and > = 02544 kJ/mol,
and for chloride / = 424 Å and > = 02419 kJ/mol. The temperature was set to 300 K, the
simulations were done in the NVT ensemble, and we used a salt concentration of 0.87 M.
Electrostatic interactions were computed using the Ewald summation. The full set of sim-
ulation parameters are given in [109, 286]. As the central quantity, the radial distribution
functions between all different pairs of particles were computed from the MD simulations.
They were used as an input in the IMC procedure (described in Section 3.1). The new
coarse-grained interaction potentials are shown in Fig. 19. The potentials are not as “soft” as
the DPD potentials in Fig. 3 but have extra features and a relatively hard core. That simply
reflects the degree of coarse-graining and the fact that this method preserves the identity of
the coarse-grained entities.

As a little, digression a short comment regarding the model should be said. Whereas there
are several well established and extensively studied models for water (see, e.g., Ref. [287] and
references therein), flexible SPC being one of them, that is not the case for NaCl. The cho-
sen Smith–Dang parameterization is hand optimized for NaCl and reproduces some of the
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Figure 19. The effective interaction V eff&r' versus the radial distance r for all pairs of particles as obtained from
the radial distribution functions of MD simulations at 0.87 M salt concentration. “O” refers to the oxygen atom in
a water molecule.

properties well. In a recent study [288], we compared a number of force fields for simulations
of NaCl in aqueous solutions and found that there are some important differences between
them. We are pointing this out because one should always validate the coarse-grained results
against the particular model used to obtain the new potentials.

A comparison of the effective interactions to the potentials of mean force revealed [288]
that the overall structures of the potentials of mean force were roughly similar to those of the
effective interactions—as expected—but there were significant differences in the form and
amplitudes of some of the peaks. Furthermore, it is important to notice that the long-range
tails of V eff&r' include a contribution from Coulombic forces, whereas the tails of the poten-
tials of mean force do not (i.e., they decay rapidly to 0 for small r , resembling the behavior
typical for the commonly used Derjaguin–Landau–Verwey–Overbeek [DLVO] theory for
colloids; see, e.g., Ref. [289]). From the comparison with the results in Ref. [288], we con-
clude that the potential of mean force serves as a reasonable approximation of V eff&r' but
is distinctly different quantitatively. This difference becomes more pronounced for charged
particles for which even the qualitative behavior may be different.

At this point, we would like to stress the following six features:

1. All DPD calculations that will be discussed below were carried out with the V eff&r'
obtained from the MD simulations at 0.87 M salt concentration. As was noticed pre-
viously [286], the effective potentials are rather weakly affected by a change of salt
concentration (i.e., it is not necessary to recompute the effective interactions for all
different salt concentrations).

2. We used a cutoff rc = 926 Å in all the cases. This was done to enhance the efficiency
of the model, and it did not give rise to artifacts in, for example, g&r', as explicit tests
confirmed. If larger cutoffs are desired, one can either compute V eff&r' over a larger
interparticle distance or approximate the long-distance part by a Coulombic tail [109].

3. The electrostatic interactions that were explicitly accounted for in the MD simulation
are now implicitly included in the effective interactions. This is reflected in the shape
of the potentials.

4. DPD simulations were carried out with coarse-grained water molecules, each of them
represented by a single spherical particle. The dynamics resulting from hydrogen bonds
are implicitly described by the effective interactions.

5. The V eff&r' have a relatively soft core; that is, the potentials shown in Fig. 19 were
extrapolated to a finite value as r → 0.

6. The weight functions were chosen as to be of the standard form +R&r' = *1 − r/rc-
(see Section 3.2). The dissipation strength , [see Eq. (13)] was determined such that
the decay rate of the single-particle velocity correlation function at early times was
approximately identical in MD and DPD simulations. That yielded , = 0272, which was
used in simulations. Note that , is the only fitting parameter in this model.
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Whereas the first five items are straightforward, the last item is the critical step that con-
nects the DPD thermostat to the MD simulations through the , parameter. It is important
to understand that there is no unique way to fix the strength of the dissipative force ,. Here,
we adjusted the rate of the dynamics by finding an optimal , in the sense that the initial
decay rate of the single-particle velocity correlation function,

;&t' ≡ &"vi&t' · "vi&0'' (36)

(separately for Na+, Cl−, and H2O), was approximately similar in MD and DPD calculations
at 0.87 M. This way, , does not fix the long-time decay of ;&t's, and hence does not fix the
diffusion coefficients. This scaling is in agreement with the pair collision theory [290]. The
single-particle velocity autocorrelation functions are shown in Fig. 20.

6.3. Comparison Between Molecular Dynamics and
Coarse-Grained Simulations

To check the consistency of our coarse-grained approach with the MD simulations, we first
compared the radial distribution functions g&r' of the two approaches. As can be seen in
Fig. 21, the results for the g&r's are in excellent quantitative agreement. In addition to this,
the coordination numbers [219] were found to be in perfect agreement with those measured
in the MD simulations. This proves that the method is self-consistent, at least in terms of
static properties.

Even when static properties are well reproduced, there is no reason for the dynamics
of the coarse-graing system to resemble the true dynamics of the system [32]. To test the
dynamical properties of the system, we measured the tracer diffusion coefficient D using the
Einstein relation for mean-square displacements,

D = lim
t→$

1
6 t

&*"ri&t'− "ri&0'-2' (37)

which can provide us with information of possible problems on the dynamics of the system.
Here "ri&t' is the position of a tagged particle at time t. To study dynamics even further, we
have also computed the shear viscosity by a Green–Kubo relation [219]. Dynamical proper-
ties are a different matter, and there is no reason to expect, a priori, for them to match. This
is particularly so in systems in which water and charges, or polarizable particles, are present,
as hydrogen bonds are directional.

The results for tracer diffusion are presented in Fig. 22. It should be noted that in all of
the coarse-grained DPD, we used the potentials obtained at 0.87 M salt concentration and
shown in Fig. 19. Thus, this also tests the applicability of the potentials.

From Fig. 22, it is clear that within the statistical error the qualitative behavior of the
diffusion coefficients versus the salt concentration is virtually identical in MD and DPD
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Figure 20. The decay of the single-particle velocity autocorrelation function ;&t' at early times. Results shown here
are for water, Na+, and Cl− ions. As the data illustrates, the early-time decay of ;&t' is essentially identical between
molecular density and dissipative particle dynamics (DPD) simulations for , = 0272 used in the DPD simulations.
Adapted from Ref. [219].



Modeling of Biologically Motivated Soft Matter Systems 49

0 4 8 10
r [å]

0

2

4

6

g(
r)

Cl-Cl
Na-Cl
Na-Na

Cl-Cl
Na-Cl
Na-Na

DPD MD

2 6 0 4 8 10
r [å]

2 6

Figure 21. The radial distribution functions obtained from the coarse-grained simulation using the DPD thermo-
stat with the effective potentials (left), and the g&r' obtained from the microscopic MD simulations (right). The
agreement between the two approaches is remarkably good.

simulations. Even at lower molarities, the deviations are small and the respective tracer dif-
fusion coefficients for Na+, Cl−, and H2O have the same overall behavior in both cases.
The increasing deviations at low molarities are the result of the growing screening length.
Furthermore, the diffusion coefficients are in good agreement with Langevin simulations
(using the generalized Langevin equation formalism) and experimental results [291]. The
agreement with experiments is mainly the result of MD simulations. The true test for our
DPD-based approach is the comparison against the MD simulations that were used to obtain
the effective potentials. As the comparison clearly shows, the coarse-grained method per-
forms very well indeed.
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concentration. DPD data has been scaled to allow comparison. Error bars are about the size of the symbols.
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Our initial studies for the temperature dependence of D through DPD simulations further
support the consistency of this approach, as we found that the effective diffusion barriers,
obtained through an Arrhenius analysis of D around 300 K at 1 M, of H2O and Cl− were
essentially identical, whereas the barrier of Na+ was about 15% larger, in agreement with
MD simulations. In our previous study [219], we also studied the behavior of the shear
viscosity coefficient. It was found that it increases monotonously for an increasing salt con-
centration, in agreement with experiments [292]. The shear viscosity coefficient was not
determined from MD simulations, as it would have been too time consuming.

6.4. Computational Aspects

In addition to the above physical aspects, there are important computational gains as well.
The coarse-graining procedure, even at this very modest level, led to a speed-up of the order
of 20, as the CPU times for MD and DPD simulations were almost identical but the particle
numbers studied by MD and DPD were about 300 and 7000, respectively (at the same
densities and simulation times of about 2 ns). As a result of the coarse-graining procedure,
the fast internal and orientational degrees of freedom related to water have been integrated
out leading to the speed-up.

We expect that in more complex systems where the molecular description can be coarse-
grained more than here, leading to a molecular description with a smaller number of parti-
cles and softer interparticle interactions, the speedup will be significantly larger. A further
important aspect is that once the MD simulation for obtaining the potentials has been done,
the stored equilibrium configurations can be reused to obtain new effective potentials; that
is, between different groupings of molecules. This provides a straightforward approach to
study the effect of the level of coarse-graining on the properties of the system. In the case
of lipid molecules, for example, such studies may reveal the essential interaction centers
(such as molecular groups with a finite charge) and the key features of molecular structure
that are crucial for the behavior of the system. Obviously, these features should then be
accounted for in the coarse-grained model. Further, it is noteworthy that this methodology
can be applied to a wide range of scales starting from ab initio simulations.

6.5. Discussion and Relation to Other Methods

In this section we have discussed in detail the linking of classical molecular dynamics sim-
ulations to a higher-level description via the IMC method [109]. We chose to have only a
very modest level of coarse-graining to be able to better validate our results against the
microscopic MD simulations.

The agreement between the present coarse-grained approach with the MD results and
experiments clearly demonstrates that the method itself has a sound physical foundation as
well as potential for further applications. In particular, despite the coarse-graining of both
the particles and the interactions, the results show that the method retains the characteristics
of different molecules, or molecular groups, and the essential aspects of interparticle inter-
actions. Furthermore, although the level of coarse-graining used here has been quite modest,
the results do demonstrate that the method can reduce the computational load significantly
as compared to detailed molecular models.

Here, the computational gain was a factor of 20. This may sound modest but one should
keep in mind that, unlike the MD simulations, the mesoscopic simulations were performed
using an unoptimized simulation code and that the factor of 20 alone would be able to
push us to the microsecond scale to enable studies of, for example, dynamic properties.
Thus, this approach allows one to study soft matter systems over mesoscopic scales beyond
the atomistic regime. It is also noteworthy that as DPD satisfies momentum conservation,
this approach allows studies of a given system with full hydrodynamics that is essential in
various soft matter processes. Thus, we feel that the approach presented here provides a
good starting point and a platform for further studies of macromolecular systems and of the
general question of bridging different time and length scales.

An important and general question regards the limitations of coarse-graining, and how
much does it depend on physically relevant variables such as density, temperature, pressure,
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and salt concentration. Although we lack general knowledge, the results presented here
indicate that it is not necessary to obtain the effective potentials for each condition studied.
This idea is supported by further ongoing studies of lipid systems (DMPC) and various
solutions (LiCl, CaCl2), in which case we have studied the effects of varying density and
temperature. The results from these simulations are in favor of our conclusions about the
generality of this approach. One of the main issues in regard to charge carrying systems is
to check that the coarse-grained systems actually obey the Stillinger–Lovett sum rules [89]
and thus charge conservation. Work is in progress to address that question.

We are currently applying this method to more complex biomolecular systems of
amphiphilic lipid molecules in explicit water, with a stronger focus on the coarse-graining.
Macromolecular systems pose new conceptual problems, and lipids, because of their
amphiphilic nature, are particularly challenging. For this reason, at the moment no system-
atic method for coarse-graining lipids exists. We are currently extending the hierarchical
approach presented here to lipids as well.

Finally, we would like to note that the method discussed here bears a very close resem-
blance to the approach by Müller–Plathe and coworkers in the context of polymeric systems.
Elegant reviews on coarse-graining of polymeric systems are provided in Refs. [29, 32]. As
far as the coarse-graining of lipid systems is concerned, the work of Shelley et al. presents
the current state-of-the-art concerning this issue [276].

7. CONCLUDING REMARKS
Liquid crystals, paints, polymers, clay, foam, complex fluids, and surfactants share many
things in common. Most important, these materials are distinctly different from liquids and
solid condensed matter systems for which reason an idea has emerged that they constitute
a new class of materials called soft matter. What is common to soft matter systems is that
they are all characterized by weak interactions of the order of thermal energy. Because
&kBT ' ≈ 26 meV, the energy scale associated with soft matter is well below typical interaction
energies in condensed matter systems, where they are on the order of 1 eV. Second, what
is peculiar to soft matter is a multitude of fascinating phenomena, many of which deal with
biological issues and are therefore related to living matter and life sciences. This point is
truly challenging because biological systems in particular are characterized by extremely wide
length and timescales, ranging from femtoseconds to several days and from nanometers to
several meters.

Without doubt, our understanding of soft matter and biological systems is largely based on
experiments. Nevertheless, it is a plain fact that experiments cannot live on their own. First
of all, the resolution of experimental approaches in time and space is often limited, which
implies that there are always issues that cannot be probed by experiments. The interpretation
of experimental results is further always based on some model, thus stressing the importance
of theoretical work that can provide one with an understanding of the laws of nature that
govern these systems. Analytical theory, however, is also unable to live on its own. In addition
to the models whose underlying assumptions can be questioned, the analytical approach is
troubled by the fact that analytical calculations are often based on approximations whose
validity may be difficult to assess. To resolve these problems, and concurrently to bridge
theory and experiments more closely together, it has become common to carry out computer
simulations based on well-defined theoretical models.

The models used in computer simulations can be quantum mechanical, and thus be able to
address questions where electronic degrees of freedom are important. However, if electronic
degrees of freedom are not crucial, a somewhat simpler approach using classical molecu-
lar dynamics in atomic level is perhaps more appropriate. For phenomena that take place
over much larger scales, even more coarse-grained approaches are needed, leading us to
mesoscale and macroscale simulation approaches. Thus, the fact that we are dealing with a
variety of different time- and length scales in biological systems implies that one needs to
develop and employ multiscale modeling techniques, an approach in which different kinds
of computer simulation methods are bridged together through coarse-graining approaches.
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In this review, our aim has been to present an overview of the essential underlying ideas
related to molecular modeling, molecular dynamics simulations in atomic detail, and meso-
scopic simulation methods probing systems beyond the atomic regime. In addition, we have
discussed coarse-graining techniques whose aim is to reduce the number of degrees of free-
dom and consequently to yield less detailed models for studies of large-scale properties.
Although this overview is focused on some techniques that we have found most appropriate
for the present case, we hope that it has been able to highlight the challenges and future
prospects related to the field.

We consider it a fact that molecular modeling in general is a unique tool that can provide
a great deal of insight into both the microscopic and the large-scale properties of biolog-
ically relevant soft matter systems. The numerous applications in biosciences as well as in
technologically related soft matter fields are some of the reasons that justify and motivate
this work. Yet the challenge related to understanding such extremely rich problems, many
of which are of fundamental nature, provides another and even a more important reason.
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