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ABSTRACT

A constant supply of glucose is vital for life. Excessive and insufficient amounts can be detrimental to the health of the cell and leads to
a variety of complications in the long run. However, due to the polarized nature of glucose molecules, a family of glucose transporters
are required for transport across the cell’s plasma membrane. In this paper, the glucose transporter protein GLUT1 is studied using
two modelling methods: a simple system of differential equations and an object oriented agent-based model. The latter approach
incorporates elements of biology and communication between components into the system, yet remains relatively easy to implement.
Furthermore, it yields results which are in agreement with both experimental observations and the qualitative observations of more
complex mathematical models of other glucose transporters.
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1 INTRODUCTION

As the most abundant organic molecule in the biosphere [1], glu-
cose is the primary energy source in the animal kingdom [1].
All living eukaryotic cells rely heavily on a consistent supply of
glucose obtained from the diet and have developed multiple me-
chanisms for its synthesis, transport, and storage. Finely tuned
mammalian regulatory systems ensure that glucose homeostasis
is maintained under a wide array of varying conditions. Under
normal circumstances, the glucose concentration in the plasma
after a meal can reach levels of 7 to 8 mmol/L, while during a time
of fasting it can drop to 4 to 5 mmol/L [2, 3]. In an effort to main-
tain a desirable blood glucose level within this range, its concen-
tration is carefully regulated by a system of hormones and cells,
the most notable of which is insulin. High insulin concentrations,
caused by high glucose concentrations, promote glucose storage
as glycogen in muscle and liver cells and as lipids in fat and liver
cells. When glucose levels become too low, insulin levels decre-
ase to 5 to 20% of what is measured after a meal [4]. As a result,
the liver and, to a lesser degree, the kidneys release glucose into
the blood. Serious consequences arise when the blood glucose
concentration balance is not preserved since brain cells and other
cells require a consistent supply of glucose. High glucose levels
lead to damaged eyes, kidneys, nerves, and/or heart when left un-
treated for a prolonged period of time. On the other hand, when
insufficient amounts of glucose are transported into the cells, they
do not get enough energy and starve resulting in seizures, coma,
and death [2, 4].

Since glucose is a hydrophilic molecule, it cannot simply per-
meate the cell membrane and diffuse into the cell. Instead, it is
transported down its concentration gradient by means of a family
of twelve passive facilitated glucose transporters (GLUT) and one
H+-coupled myo-inositol transporter (HMIT) while being trans-
ported against its concentration gradient by up to six active Na+-
dependent glucose transporters (SGLT) [5]. The transporters have
various roles in different bodily tissues and fluids [2]. The cha-
racteristics of the passive transporters, the GLUTs and HMIT, are
summarized in Table 1.

Glucose transporter deficiencies have been implicated in
a number of diseases and disorders. For recent reviews, see
Refs. [6, 7, 8]. Cancer cells, for example, are known to have acce-
lerated metabolism, which requires an increase in glucose uptake.
Since transport is limited by the availability of transporters, this
increase of glucose uptake in malignant cells has been associa-
ted with an increased expression of glucose transporter proteins.
Evidence suggests that both GLUT1 and GLUT3 play an essen-

tial role in cancer progression [9, 10]. Determining the transport
properties and mechanisms, and subsequently targeting the GLUT
isoforms involved, is therefore a potential method for treating can-
cer [10]. In addition, an unstimulated GLUT4 protein, the insulin-
dependent glucose transporter found in the heart, skeletal mus-
cle, and adipose tissue, has been linked to type 2 diabetes [11].
Furthermore, recent research has revealed that a deficiency in glu-
cose transporters in the brain is a rare, but preventable cause of
mental retardation [12]. Hence, the importance of a thorough un-
derstanding of glucose transporter deficiencies is apparent and
begins with a careful study into the mechanisms surrounding the
transportation of glucose into the cells.

Much has been done to study glucose transporters from a bi-
ological perspective [13]. However, biological systems involve
more than the structures of which they are comprised: informa-
tion storage, processing, and execution occur at distinct levels of
organization [19]. Complex organizations of processes and sig-
nalling paths must therefore be taken into consideration: a cell’s
genome houses long-term information storage, proteins are cru-
cial for short-term information storage and processing, and me-
tabolites influence information retrieval [19]. In order to unders-
tand biology at the systems level, it is imperative that the relati-
ons between structure and dynamics of the systems be examined,
rather than just the characteristics of isolated cells or organisms
alone [20]. Models incorporating both the biology and the inter-
communication have significant potential to greatly improve the
understanding of these transporter proteins, but have unfortuna-
tely been lacking.

In this paper, we analyze a model of GLUT1 [21] using a
simple system of differential equations and a new agent-based
method using the Stochastic Pi Machine (SPiM) [22, 23]. While
the incorporation of the aforementioned signalling pathway featu-
res into the system of differential equations is not a trivial exercise
– requiring the explicit inclusion of various rate constant depen-
dencies [24] – the SPiM approach simply and automatically ac-
counts for these intercommunication components in an intuitive
way. We present these two GLUT1 models in Section 2 and the
results thereof in Section 3. In Section 4, we provide a discus-
sion and a comparison with the more complex models to which
we have thus far alluded.

2 THE MODELS
Glucose transporters allow for the movement of glucose across
the plasma membrane either into or out of the cell. Four steps
have been shown to be involved [25]:
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1. Binding: Glucose binds to the empty protein on either
face of the membrane.

2. Transport: The protein undergoes a conformational
change which closes the one binding site and exposes
the other.

3. Dissociation: Glucose dissociates from the protein.

4. Recovery: The empty GLUT1 reverts to its initial state.

In order to model the behaviour of a glucose transporter, a
system of four transporter states has been proposed in [21] which
correspond to the four steps presented above. Systems comprised
of four and six states have been presented in the literature [26, 27,
24, 28]. However, the six-state models, which were used to model
Na+/glucose transporters (SGLT), have been shown to produce
qualitatively similar predictions as four-state models [28]. For the
purposes of this paper, we will use the four-state approach.

The states are defined as follows. In state one (S1), the empty
binding site of the protein is exposed to the exterior of the cell.
As soon as a glucose molecule binds to the exposed site, the
transporter makes a transition to state two (S2). In state three (S3),
the protein’s binding site, bound with a glucose molecule, faces
the interior of the cell. When the glucose molecule is released into
the cytoplasm of the cell, GLUT1 is in state four (S4). The cycle
can then repeat if an S4 GLUT1 transforms into an S1. Moreover,
all of the aforementioned processes are reversible.

The following notation is used throughout this paper. Let
each yi be defined as the proportion of glucose transporters in
state i . Clearly,

y1, y2, y3, y4 ≥ 0 (1)

and

y1 + y2 + y3 + y4 = 1. (2)

Table 1 – Subtypes of GLUT proteins.

Designation Tissue expression Special features
GLUT1 red blood cells [13]; erythrocytes and

endothelial cells lining blood vessels of
brain [2]

ubiquitously expressed and transports glucose into most cells; plays essential
role when glucose levels are low, also in cases of hypoglycemia [4]

GLUT2 liver, intestine, kidney, and pancreatic β

cells [13]
functions as part of glucose sensor system in β cells [2]; transports glucose
out of β cells and into blood stream [3]

GLUT3 brain and nerve tissue (neurons); pla-
centa, kidney, heart, and liver [13]

GLUT1, GLUT2, and GLUT3 proteins account for ≈ 80% of non-insulin de-
pendent glucose uptake of body [3]. GLUT1 and GLUT3 allow glucose to cross
blood-brain barrier and enter neurons [2].

GLUT4 heart, skeletal muscle, and adipose tis-
sue [14]

stimulated by insulin [3]; sequestered inside a cell’s special storage vesicles
until stimulated to translocate to plasma membrane [14]

GLUT5 intestine, brain, muscle, adipose tissue,
and testis [13]

transports fructose [2]

GLUT6 brain and leukocytes [15]
GLUT7 liver; hepatocytes and other gluconeo-

genic tissues [16]
transports glucose across endoplasmic reticulum membrane [16]

GLUT8 testis, blastocysts, brain, muscle, and
adipocytes [15]

≈ 44.5% identical with GLUT5 [9]

GLUT9 kidney and liver [15]; also detected in
placenta, lung, blood leukocytes, heart,
and skeletal muscle [17]

≈ 31% identical with GLUT3 [9]

GLUT10 liver and pancreas [14, 15] ≈ 30-35% identical with GLUT3 and GLUT8
GLUT11 heart and skeletal muscle [14, 15] ≈ 41% identical with GLUT5
GLUT12 skeletal muscle, adipose tissue, and

small intestine [14]
≈ 29% identical with GLUT4 and 40% with GLUT10

HMIT brain [18] ≈ 38% identical with GLUT8
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Furthermore, let rate kmn denote a transporter that switches
from state m to state n. Let [G]in denote the intracellular glu-
cose concentration and [G]out denote the extracellular glucose
concentration.

2.1 Transporter classes and model parameters
We further describe the four states of the model as follows
(a summary of which can be found in Table 2):

Table 2 – A summary of the rate constants for state transitions.

Forward
Rate

Reverse
Rate

process process

S1-S2 k12[G]outy1 S2-S1 k21y2
S2-S3 k23y2 S3-S2 k32y3
S3-S4 k34y3 S4-S3 k43[G]iny4
S4-S1 k41y4 S1-S4 k14y1

1. State 1: Transporters enter S1 from two configurations:
from S2 at rate k21y2 and from S4 at rate k41y4. Trans-
porters in this state can also transform to S4 at rate k14y1
and S2 at rate k12[G]outy1.

2. State 2: Transporters enter S2 from S1 at rate
k12[G]outy1 and from S3 at rate k32y3. S2 transporters
transition to S1 at rate k21y2 and to S3 at rate k23y2.

3. State 3: Transporters enter S3 from S2 at rate k23y2
and from S4 at rate k43[G]iny4. In turn, transporters in
S3 can transform to S4 at rate k34y3 and S2 at rate k32y3.

4. State 4: Transporters enter S4 from S3 at rate k34y3
and S1 at rate k14y1, while they leave the state to S3 at
rate k43y4 and to S1 at rate k41y4.

We set

[G]in = Nin
NAVcell

= Nin
6.023× 1023 × 1.0× 10−17

= 1.6603× 10−7 × Nin

(3)

where NA is Avogadro’s number (6.023 × 1023 molecules/mol),
Vcell is the volume of the cell (1.0 × 10−17 L), and

Nin(t) = Nin(t − 1) + Nt(k34t y2 − k43[G]int y3) (4)

is the number of glucose molecules inside the cell at time t . Note
that Nt is the number of glucose transporters taken into consi-
deration in this simulation. The approximate volume of a cell

is 1.0 × 10−13 L [29] and the number of GLUT1 transporters
in a given cell is 1.2 × 108. To keep this ratio the same, but
to decrease the number of transporters involved in the simula-
tion, a cell volume of 1.0 × 10−17 L and 10000 GLUT1 proteins
are used. Moreover, we let [G]out be a free parameter and let
"t = 0.0001 min.

2.2 The system of differential equations model
As the basic system and reference, we used the following mo-
del [21] for GLUT1

dy1
dt

= −k12[G]outy1 + k21y2 + k41y4 − k14y1 (5)

dy2
dt

= k12[G]outy1 − k23y2 − k21y2 + k32y3 (6)

dy3
dt

= k23y2 − k32y3 − k34y3 + k43[G]iny4 (7)

dy4
dt

= k14y1 + k34y3 − k43[G]iny4 − k41y4. (8)

where constraints (1) and (2) are satisfied. Substituting the
constraints into the above gives [21]

dy1
dt

=
(
− k12[G]out − k41 − k14

)
y1

+ (k21 − k41)y2 − k41y3 + k41
(9)

dy2
dt

= k12[G]outy1 − k23y2 − k21y2 + k32y3 (10)

dy3
dt

= − k43[G]iny1 + (k23 − k43[G]in)y2

− (k32 + k43[G]in + k34)y3 + k43[G]in
(11)

y4 = 1− y1 − y2 − y3 (12)

where constraint (1) is satisfied [21]. This system of equations
was solved using a fourth order Runge-Kutta method. The results
are presented in Section 3.

2.3 The Stochastic Pi Machine model
As an alternative approach, we consider an agent-based method
(ABM) for modelling GLUT1. This technique considers a collec-
tion of decision-making, rule-following, adaptable entities called
agents. Execution of such systems occurs simply by simulating
these aforementioned, potentially complex, nonlinear, or path-
dependent, relationships [30, 31]. We use the Stochastic Pi Ma-
chine (SPiM) to implement this method [22, 23, 32].
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Table 3 – Summary of the parameter estimates.

Parameter Estimate Description Reference
k12 2.4 mM−1 min−1 Rate at which extracellular glucose binds with a transporter [21]
k14 1000.0 min−1 Rate at which a free transporter changes state [21]
k21 42.0 min−1 Rate at which glucose is released outside the cell [21]
k23 1000.0 min−1 Rate at which the bounded transporter changes state [21]
k32 1000.0 min−1 Rate at which the bounded transporter changes state [21]
k34 42.0 min−1 Rate at which glucose is released inside the cell [21]
k41 1000.0 min−1 Rate at which a free transporter changes state [21]
k43 2.4 mM−1 min−1 Rate at which intracellular glucose binds with a transporter [21]

[G]in (1.66 · 10−7Nin) mol/L Intracellular glucose concentration
[G]out variable Extracellular glucose concentration
"t 0.0001 min

Whereas mathematical modelling techniques involving diffe-
rential equations require the entire set of equations to be manually
updated when a small part of the model changes, the process cal-
culi approach employed by SPiM does not. Instead, the composi-
tional features of SPiM allow one to understand, model, analyze,
and simulate complex systems by breaking them up into simpler
subsystems or processes. There are three significant advantages:
(1) the network structure is allowed to change as a result of inte-
raction, (2) various complex systems may be modelled indepen-
dently and later combined to yield a broader picture, and (3) mo-
dular and hierarchal structure may be incorporated into the sys-
tem. Moreover, in order to facilitate the analysis of a pathway, an
appropriate model would incorporate information of its molecular,
biochemical, and dynamic aspects into the model. Via synchroni-
zed pair-wise communication on complementary channels, pro-
cess calculus enables independent agents to interact with and mo-
dify each other. In lieu of modifying shared variables, process cal-
culus represents interactions between agents as communication
via channels.

Using the model for GLUT1 as an example, we provide a brief
description of the SPiM code used here. See Figure 1 for the flow
chart. The first of the four main parts is the directive section whe-
rein the general information of the simulation is stored: the dura-
tion, the number of increments, and the “of interest” data points
are noted here.

The second part defines the variables of the code: the chan-
nels, delays, and other variables. In this section, we specifically
model the behaviour of the GLUT1 protein by breaking it up into
two processes that run simultaneously while utilizing six compli-
mentary channels and two delays. See Figure 1.

The third partition is where the action takes place: molecules
and their respective domains are treated as processes, comple-
mentary structural and chemical determinants are modelled using
communication channels, and chemical interactions and the re-
sulting system modifications are modelled as communication and
channel transmissions. Channels are specified to either send
(with an ‘!’) or receive communication (with a ‘?’). See Figure 1.
Importantly, in this case, we also ensure that the rate of trans-
porters changing from S4 to S3 is dependent upon the intracel-
lular glucose concentration by including a self loop: Glucose In
– Glucose In.

The final section executes the code and specifies the number
of molecules involved in the entire procedure.

Glucose_Bound2

Glucose_Out

Glucose_Bound

Glucose_In

S1

S2

S3

S4

D41D14

?C12

?C23

?C34

?C21

?C32

?C43

!C12 !C21

!C23 !C32

!C34 !C43

!C43

Process 1 Process 2

Figure 1 – A graphical depiction of the two process used to model GLUT1 in
SPiM. The path of the glucose molecule is depicted on the left, while the transfor-
mation of the transporters between states is shown on the right. The symbols !C
and ?C are used to denote complimentary channels. Paths commencing with D
denote delays. For example: The transition from S1 to S2 is dependent upon the
presence of a glucose molecule. This dependency is modelled using a compli-
mentary channel. On the other hand, the transition from S1 to S4 is independent
and therefore we assign a delay to this path.
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3 RESULTS
Glucose transport into the cell via GLUT1 was modelled using
both a system of differential equations and object-oriented, sto-
chastic pi calculus approach. Simulations were run and results
were obtained for three extracellular glucose concentration levels:
1.5 mM, 30.0 mM, and 700.0 mM.

Results for intracellular glucose concentration levels are pre-
sented in Figure 2. In Figure 2a, it may be observed that the re-
sults are relatively similar for both models. Although the features
are more pronounced in the SPiM simulations, both plots exhi-
bit a steady increase in glucose transportation rates until about
0.2 minutes at which point the rate of uptake decreases sligh-
tly. However, as extracellular glucose concentration levels rise,
so does the divergence between test results for the two model-
ling techniques. By 0.3 minutes, the intracellular glucose con-
centration levels for [G]out = 30.0 mM (Fig. 2b) and [G]out =
700.0 mM (Fig. 2c) differ between the tests by factors of about 8
and 18, respectively.
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Figure 2 – The intracellular glucose concentration with respect to time for the
SPiM model and the system of differential equations 9, 10, and 11. The solid
line represents the SPiM simulations and the dashed line represents the system
of differential equations outcome. (a) [G]out = 1.5 mmol/L, (b) [G]out =
30.0 mmol/L, and (c) [G]out = 700.0 mmol/L.

Moreover, disparities between the proportion of transporters
in each state are significant. For example, in comparing Figu-
res 3a and 3b, the most obvious divergence is observed in the
trends of state one and state four. While they remain at similar le-
vels in Figure 3a, the trends head in opposite directions in Figure
3b. This discrepancy is also displayed in the [G]out = 30.0 mM
and [G]out = 700.0 mM simulations. Qualitatively interesting
trends may be observed when comparing the plots of states two
and three for all simulations (Figs. 3b, 4b, and 5b). The reasons
behind these differences will be discussed in Section 4.

It is further important to note that although 0.5-30 mM is close
to the normal 4-7 mM physiological extracellular glucose concen-
trations, no saturation effects are detected in the results of the sys-
tem of differential equations. See Figure 6a. In fact, convergence
is only detected when the extracellular glucose concentration re-
aches levels of 700.0 mM. In contrast, results obtained from the
SPiM simulations show that convergence is detected at a much
lower extracellular glucose concentration (Fig. 6b).
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Figure 3 – [G]out = 1.5 mmol/L. The proportion of transporters in each state
with respect to time for (a) the system of differential equations 9, 10, and 11 and
(b) SPiM simulation model. The solid black line represents the proportion of
empty transporters facing the exterior of the cell, the solid grey line represents
the proportion of transporters bound with glucose facing the exterior of the cell,
the dashed grey line represents the proportion of transporters bound with glucose
facing the interior of the cell, and the dashed black line represents the proportion
of transporters facing the interior of the cell.
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Figure 4 – [G]out = 30.0 mmol/L. The proportion of transporters in each state
with respect to time for (a) the system of differential equations 9, 10, and 11 and
(b) SPiM simulation model. The solid black line represents the proportion of
empty transporters facing the exterior of the cell, the solid grey line represents
the proportion of transporters bound with glucose facing the exterior of the cell,
the dashed grey line represents the proportion of transporters bound with glucose
facing the interior of the cell, and the dashed black line represents the proportion
of transporters facing the interior of the cell.

4 DISCUSSION
Our SPiM results, most notably Figures 4b and 5b, are qualitati-
vely similar to those found from the six-state differential equations
model of Na+/glucose cotransporters presented in [24]. In par-
ticular, the divergence of transporter states one and four, also a
feature of the Parent et al. paper, is quite different from what is
observed from the simpler differential equations model used in
this paper. Therefore, an adjustment to equations (5)-(8) must be
made as was done in [24]: the inclusion of exponential terms in
rates kmn. While this modification would likely yield more pro-
mising results (not done here), the complexity of the system in-
creases. The benefits of an agent-based model, as was discussed
in Section 2, should be clear: intercommunication and signalling
paths result in more reasonable results without over complicating
the system. In addition, extra features could be easily added as
new processes.
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Figure 5 – [G]out = 700.0 mmol/L. The proportion of transporters in each
state with respect to time for (a) the system of differential equations 9, 10, and 11
and (b) SPiM simulation model. The solid black line represents the proportion
of empty transporters facing the exterior of the cell, the solid grey line represents
the proportion of transporters bound with glucose facing the exterior of the cell,
the dashed grey line represents the proportion of transporters bound with glucose
facing the interior of the cell, and the dashed black line represents the proportion
of transporters facing the interior of the cell.

Furthermore, the lower level of intracellular glucose concen-
tration convergence of the SPiM results, and the corresponding
lower levels of extracellular glucose concentration at which this
occurred, was more realistic than those of the system of differen-
tial equations. These results are in reasonable agreement with
experiments: the mean level of intracellular glucose concentra-
tion in muscle cells has been shown to be 0.11 ± 0.46 mM in
non-diabetic individuals [33].

In conclusion, the agent-based modelling technique em-
ployed by SPiM is simple and efficient: adjustments to the manner
in which SPiM implements biological models are relatively unde-
manding and intuitive. Moreover, the notions behind SPiM are
relevant. In particular, the fact that complex systems can be divi-
ded into smaller parts which can later be combined is applicable
in many areas of mathematical biology and beyond.
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Figure 6 – Comparing three extracellular glucose concentrations. (a) and (b).
The intracellular glucose concentration with respect to time for the system of dif-
ferential equations 9, 10, and 11 and the SPiM simulation model. The solid line
represents an extracellular glucose concentration of 1.5 mM, the dashed line re-
presents an extracellular glucose concentration of 30.0 mM, and the dotted line
represents an extracellular glucose concentration of 700.0 mM.
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Figure 7 – A graphical depiction of the intracellular glucose concentration with
respect to time for the system of differential equations 9, 10, and 11. Note that
convergence in only depicted when extracellular glucose concentration levels are
at significantly higher levels than the 4-7 mM normally observed.
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