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In this paper we study numerically two-dimensional spatio-temporal pattern forma-
tion in a generic Turing model, by investigating the dynamical behavior of a monostable
system in the presence of Turing-Hopf bifurcation. In addition, we study the interaction
of instabilities in a tristable system. We speculate that the interaction of spatial and
temporal instabilities in Turing systems might bring some insight to a recent biological
finding of temporal patterns on animal skin.

1.1 Introduction

In 1952 Alan Turing showed mathematically that a system of coupled reaction-
diffusion equations could give rise to spatial concentration patterns of a fixed
characteristic length from an arbitrary initial configuration due to diffusion-
driven instability [1]. A remarkable feature of Turing systems as compared to
other instabilities in systems out of equilibrium [2, 3] is that the characteristics
of the resulting patterns are not determined by externally imposed length scales
or constraints, but by the chemical reaction and diffusion rates intrinsic to the
system.

Turing’s goal was to model mechanisms behind morphogenesis, i.e., biological
growth of form. Although genes play an important role in determining the
anatomical structure of the resulting organism, from physical point of view they
cannot explain spatial symmetry-breaking, which takes place as the cells start to
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differentiate. Turing hypothesized that as soon as the spherical blastula becomes
large enough and there are some random deviations from the perfect symmetry,
that state becomes unstable and the system is driven to another state defined
by spontaneous physico-chemical processes. It has been qualitative shown that
Turing models can indeed imitate biological patterns [4, 5], but the question
whether morphogenesis really is a Turing-like process still remains.

The first experimental observation of a Turing pattern in a chemical reactor
was due to De Kepper’s group, who observed a spotty pattern in a chlorite-
iodide-malonic acid (CIMA) reaction [6]. Later the results were confirmed by
Ouyang and Swinney, who observed both striped and spotty patterns in ex-
tended systems [7]. The experimental observation of Turing patterns renewed
the interest in these complex systems and subsequently a lot of research has
been carried out employing theoretical [8, 9], computational [10, 11, 12] and
experimental approaches [13].

Although Turing instability results in spatially periodic patterns that are
stationary in time, in general reaction-diffusion system can also exhibit a vari-
ety of spatio-temporal phenomena [14, 15]. Hopf instability results in spatially
homogeneous temporal oscillations and its relation to Turing instability is of
great interest. This is because both instabilities can be observed experimentally
in the CIMA reaction by varying the concentration of the color indicator in
the reactor [15, 16]. The interaction between these instabilities [17] may take
place either through a co-dimension-two Turing-Hopf bifurcation, when the cor-
responding bifurcation parameter threshold values are equal [18, 19] or due to
different competing bifurcations of multiple stationary states [15, 20]. Both the
situations result in interesting spatio-temporal dynamics. In addition, Yang et
al. have recently obtained a variety of both stationary and oscillating structures
in the numerical simulations of a system with interacting modes [21, 22].

In this article we report a study of Turing pattern formation in a two-species
reaction-diffusion model with one or more stationary states. Simultaneous in-
stability of many states results in competition between bifurcating states and
the system exhibits spatial, temporal and spatio-temporal pattern formation
depending on the system parameters. We are especially interested in the cou-
pling of Turing and Hopf bifurcations, which results in periodic spatial patterns
and temporal oscillations. In the next section we introduce and briefly analyze
the model that we have used. Then, we present and discuss the results of our
numerical simulations, which is followed by conclusions.

1.2 Analysis of the model

In this paper we use the so called generic Turing model [23], where the the
temporal and spatial variation of normalized concentrations is described by the
following reaction-diffusion system [24]

ut = D∇2u + ν(u + av − uv2 − Cuv)

vt = ∇2v + ν(bv + hu + uv2 + Cuv), (1.1)
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where the morphogen concentrations have been normalized so that u = U − Uc

and v = V − Vc, which makes (uc, vc) = (0, 0) the trivial stationary solution.
The term C adjusts the relative strength of the quadratic and cubic nonlinear-
ities favoring the formation of either linear (2D stripes, 3D lamellae) or radial
(2D spots, 3D droplets) Turing structures [23, 25]. D is the ratio of diffusion
coefficients, whereas the linear parameters a, b, h and ν adjust the presence and
type of instability.

For h 6= −1 the system of Eq. (1.1) has two other stationary states in addition
to (0, 0). These states are given by ui

c
= −vi

c
/K and vi

c
= −C + (−1)i ±

√

C2 − 4(h − bK)/2 with K = (1 + h)/(a + b) and i = 1, 2. One should notice
that the values of these stationary states depend also on the nonlinear parameter
C. The characteristic equation corresponding to Eq. (1.1) can be written in the
form

λ2 +
[

(1 + D)k2 − fu − gv

]

λ + Dk4 − k2(fu + Dgv) + fugv − fvgu = 0, (1.2)

where the partial derivatives of the reaction kinetics are given by
(

fu fv

gu gv

)

= ν

(

1 − v2

c
− Cvc −2ucvc + a − Cuc

v2

c
+ h + Cvc b + 2ucvc + Cuc

)

. (1.3)

Here uc and vc define the stationary state, whose stability we are studying.
The dispersion relation Re{λ(k)} can be solved from Eq. (1.2). The real and
imaginary parts of the eigenvalues corresponding to the single stationary state
(0, 0) are shown in Figure 1.1 for two sets of parameters corresponding to a
Turing bifurcation (kc unstable) and a Hopf bifurcation in a monostable system.
The parameters used in Fig. 1.1 were D = 0.122, a = 2.513, h = −1, b = −1.005
and ν = 0.199 for the Turing instability around (0, 0) with critical wave number
kc = 0.85 and the same except b = −0.8 for the Hopf instability. For more
details of the linear stability and pattern selection in the generic Turing model
we refer the reader elsewhere [24].

From Fig. 1.1 one can observe that a Turing bifurcation corresponds to the
case, where there is some ki such that Re{λ(ki)} > 0 and Im{λ(ki)} = 0.
On the other hand, a Hopf bifurcation corresponds to the situation, where a
pair of imaginary eigenvalues crosses the real axis, i.e., there is some ki with
Re{λ(ki)} > 0 and Im{λ(ki)} 6= 0. The parameters can also be adjusted such
that kc = 0 for Turing instability or so that there is a combined Turing-Hopf
bifurcation from one stationary state. The condition for the Hopf bifurcation
in the system of Eq. (1.1) is b > −1 and for the Turing bifurcation it is b <
(1 −

√
−4Dah)/D [24]. If the parameter h < −1 the stationary state (0, 0)

goes through a subcritical pitchfork bifurcation [2]. For h > −1 a tristability is
established, i.e., there are three stationary states.

1.3 Numerical simulations

We have performed extensive numerical simulations of the generic Turing model
(Eq. (1.1)) in two-dimensional domains of size 100 × 100 by using parameter
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Figure 1.1: The largest eigenvalue of the linearized system corresponding to a Turing
(left) and Hopf bifurcation (right). The real and imaginary parts of the eigenvalues
correspond to solid and dashed lines, respectively.

values corresponding to different bifurcation and stability scenarios. The time
integration of the discretized problem was carried out by using the Euler method
(dx = 1 and dt = 0.01). On one hand, we have studied the interaction of Tur-
ing and Hopf bifurcations in a monostable system, and on the other hand, a
tristable system with a coupled Turing-Hopf-Turing or Turing-Turing bifurca-
tion. These conditions result in a variety of spatio-temporal dynamics, whose
characterization is very challenging.

By using the parameters D = 0.122, a = 2.513, h = −1, b = −.95, ν =
0.199 and C = 1.57 one can adjust the system in such a way that there is only
one stationary state (0, 0), which is both Turing unstable with kc = 0.85 and
characteristic length L = 2π/kc ≈ 7.4, and Hopf unstable with oscillation period
of Tc = 2π/Im{λ(k0)} ≈ 25.40 = 2540× dt (kc = 0). Eventually, the oscillations
fade away and a stationary hexagonal spotty pattern is established. Fig. 1.2
shows snapshots of the behavior of the system at arbitrary moments of time.
The homogeneous domains changing color correspond to oscillations.

By fixing h = −0.97 6= −1 we admitted two additional stationary states and
studied the pattern formation with parameters D = 0.516, a = 1.112, b = −0.96
and ν = 0.450, which correspond to a Turing-Hopf bifurcation of the state (0, 0)
with kc = 0.46 and Turing bifurcation of the stationary states (−2.01, 0.40)
and (9.97,−1.97), both with kc = 0. The Turing-Hopf modes growing from
(0, 0) excite the former of these two states, which results in a coupling between
Turing-Hopf and Turing instabilities. From random initial configuration the pa-
rameter selection C = 1.57, which corresponds to spotty patterns [24] resulted
in a hexagonal lattice with a few twinkling spots at dislocation sites. Twin-
kling hexagonal lattices of spots have previously been obtained in numerical
simulations of a four-component Turing model [21] and of a nonlinear optical
system [26]. Our results show that ”twinkling-eye” behavior can also be observed
in a two-component model without any special preparations [27].

Using the same parameters as above, except choosing b = −1.01 one still ob-
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Figure 1.2: A two-dimensional concentration patterns obtained in a system with a
coupled Turing-Hopf bifurcation as the simulation is started from a random initial
configuration. White and gray domains correspond to areas dominated my chemical
u and v, respectively. The time evolution goes from left to right and from top to
bottom [27].

tains a tristable system, although the stationary state (0, 0) is no longer Turing-
Hopf unstable, but Turing unstable with kc = 0.46. The two other stationary
states (−1.191, 0.350) and (6.529,−1.920) are Turing unstable with kc = 0 as in
the previous case. Again the Turing modes growing from (0, 0) excite another
nearest stationary state, which results in an interesting competition between
growing modes. Although there is no straightforward Turing-Hopf bifurcation,
the modes growing from the state (−1.191, 0.350) with Re{λ(k0)} > 0 are cou-
pled with the damped Hopf modes ∝ eiω0t of the state (0, 0), which results in
oscillatory behavior with period Tc ≈ 3765× dt. This dynamics is described by
a series of snapshots in Fig. 1.3, where the homogeneous oscillations sweep out
spots with period Tc, and then the spots are again nucleated at the centers of
concentric target pattern waves. The competition continues for long times of up
to 106 × dt, although the oscillations gradually fade out.

One should mention that for parameter value C = 0, which has been shown
to correspond to a striped pattern [24], the system showed a straightforward
Turing bifurcation of the state (0, 0) without any oscillatory competition. This
happened because the Turing modes growing from the state (0, 0) and resulting
in stripes did not excite the other stationary states, i.e., the amplitude of the
striped concentration pattern was not large enough for the modes to interact
with other stationary states. Based on this observation, one can state that in
multistable systems the parameter selection might have drastic effects on the
dynamical behavior of the system.
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Figure 1.3: The two-dimensional concentration patterns obtained in a tristable system
with a coupled Turing-Hopf-Turing bifurcation as the simulation is started from a
random initial configuration. The time evolution goes from left to right and from top
to bottom [27].

1.4 Conclusions

In this paper we have studied spatio-temporal pattern formation in the generic
Turing model. Most of the studies of spatio-temporal dynamics have in general
been carried out in one-dimensional systems, since they make it feasible to study
the Turing-Hopf interaction by using amplitude equation formalism [15, 18]. In
the two-dimensional case (not to talk about three dimensions) the studies of
spatio-temporal behavior have typically, although not always [28], been more
or less qualitative. By considering stability and bifurcation aspects one can
govern and interpret the behavior of the systems to some extent, but otherwise
two-dimensional spatio-temporal dynamics is often too complex to be studied
analytically.

By using different parameter sets we have studied the Turing-Hopf coupling
in a monostable system, which resulted transient oscillatory behavior combined
with localized spotty and oscillatory domains. By establishing a tristability in
a similar system we obtained a hexagonally arranged spotty pattern with a few
twinkling spots, i.e., spots appearing and disappearing at dislocation sites. The
tristability without straightforward Turing-Hopf bifurcation resulted in temporal
competition since the stable Hopf modes of one stationary state were coupled
with the Turing bifurcation of another state, caused by competition between
a homogeneous oscillatory wave and a spotty pattern. In addition, we have
observed that different parameter values might prevent this coupling and instead
pure stationary Turing stripes would settle in.

Turing instability is not relevant only in reaction-diffusion systems, but also
in describing other dissipative structures, which can be understood in terms of
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diffusion-driven instability. Turing instability has been discussed in relation to
gas discharge systems [29], catalytic surface reactions [30], semiconductor nanos-
tructures [31], and surface waves on liquids [32]. The studies of temporal and
spatial pattern formation in Turing system are important, since they may be of
great interest also in biological context, e.g. skin hair follicle formation, which
is closely related to skin pigmentation, occurs in cycles [33]. Recently, spatio-
temporal traveling wave pattern has been observed on the skin of a mutant
mouse [34], which might perhaps be the result of a misconfigured Turing mech-
anism with competing instabilities, i.e., the pattern becomes temporal instead
of stationary due to a shift in the values of the reaction and diffusion rates of
morphogens.
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